BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32765566)

  • 1. A Cloud-Based Environment for Generating Yield Estimation Maps From Apple Orchards Using UAV Imagery and a Deep Learning Technique.
    Apolo-Apolo OE; Pérez-Ruiz M; Martínez-Guanter J; Valente J
    Front Plant Sci; 2020; 11():1086. PubMed ID: 32765566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Canopy Information Measurement Method for Modern Standardized Apple Orchards Based on UAV Multimodal Information.
    Sun G; Wang X; Yang H; Zhang X
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data on three-year flowering intensity monitoring in an apple orchard: A collection of RGB images acquired from unmanned aerial vehicles.
    Zhang C; Valente J; Wang W; van Dalfsen P; de Jong PF; Rijk B; Kooistra L
    Data Brief; 2023 Aug; 49():109356. PubMed ID: 37492231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tree-level almond yield estimation from high resolution aerial imagery with convolutional neural network.
    Tang M; Sadowski DL; Peng C; Vougioukas SG; Klever B; Khalsa SDS; Brown PH; Jin Y
    Front Plant Sci; 2023; 14():1070699. PubMed ID: 36875622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting Intra-Field Variation in Rice Yield With Unmanned Aerial Vehicle Imagery and Deep Learning.
    Bellis ES; Hashem AA; Causey JL; Runkle BRK; Moreno-García B; Burns BW; Green VS; Burcham TN; Reba ML; Huang X
    Front Plant Sci; 2022; 13():716506. PubMed ID: 35401643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic instance segmentation of orchard canopy in unmanned aerial vehicle imagery using deep learning.
    Zhang W; Chen X; Qi J; Yang S
    Front Plant Sci; 2022; 13():1041791. PubMed ID: 36531373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated extraction of
    Ji Y; Yan E; Yin X; Song Y; Wei W; Mo D
    Front Plant Sci; 2022; 13():958940. PubMed ID: 36035664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of Off-Target Dicamba Damage on Soybean Using UAV Imagery and Deep Learning.
    Tian F; Vieira CC; Zhou J; Zhou J; Chen P
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mango Fruit Load Estimation Using a Video Based MangoYOLO-Kalman Filter-Hungarian Algorithm Method.
    Wang Z; Walsh K; Koirala A
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31216769
    [No Abstract]   [Full Text] [Related]  

  • 10. Spray performance evaluation of a six-rotor unmanned aerial vehicle sprayer for pesticide application using an orchard operation mode in apple orchards.
    Wang C; Liu Y; Zhang Z; Han L; Li Y; Zhang H; Wongsuk S; Li Y; Wu X; He X
    Pest Manag Sci; 2022 Jun; 78(6):2449-2466. PubMed ID: 35306733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery.
    Lu N; Wang W; Zhang Q; Li D; Yao X; Tian Y; Zhu Y; Cao W; Baret F; Liu S; Cheng T
    Front Plant Sci; 2019; 10():1601. PubMed ID: 31921250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel approach for estimating the flowering rate of litchi based on deep learning and UAV images.
    Lin P; Li D; Jia Y; Chen Y; Huang G; Elkhouchlaa H; Yao Z; Zhou Z; Zhou H; Li J; Lu H
    Front Plant Sci; 2022; 13():966639. PubMed ID: 36092399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology.
    Torres-Sánchez J; López-Granados F; Serrano N; Arquero O; Peña JM
    PLoS One; 2015; 10(6):e0130479. PubMed ID: 26107174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying the Branch of Kiwifruit Based on Unmanned Aerial Vehicle (UAV) Images Using Deep Learning Method.
    Niu Z; Deng J; Zhang X; Zhang J; Pan S; Mu H
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comprehensive Study of the Potential Application of Flying Ethylene-Sensitive Sensors for Ripeness Detection in Apple Orchards.
    Valente J; Almeida R; Kooistra L
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30658487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A longan yield estimation approach based on UAV images and deep learning.
    Li D; Sun X; Jia Y; Yao Z; Lin P; Chen Y; Zhou H; Zhou Z; Wu K; Shi L; Li J
    Front Plant Sci; 2023; 14():1132909. PubMed ID: 36950357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning for automated detection of Drosophila suzukii: potential for UAV-based monitoring.
    Roosjen PP; Kellenberger B; Kooistra L; Green DR; Fahrentrapp J
    Pest Manag Sci; 2020 Sep; 76(9):2994-3002. PubMed ID: 32246738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization and Evaluation of Sensor Angles for Precise Assessment of Architectural Traits in Peach Trees.
    Raman MG; Carlos EF; Sankaran S
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing Nadir and Oblique Thermal Imagery in UAV-Based 3D Crop Water Stress Index Applications for Precision Viticulture with LiDAR Validation.
    Buunk T; Vélez S; Ariza-Sentís M; Valente J
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle.
    van Andel AC; Wich SA; Boesch C; Koh LP; Robbins MM; Kelly J; Kuehl HS
    Am J Primatol; 2015 Oct; 77(10):1122-34. PubMed ID: 26179423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.