BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 32765575)

  • 1. Wild Sorghum as a Promising Resource for Crop Improvement.
    Ananda GKS; Myrans H; Norton SL; Gleadow R; Furtado A; Henry RJ
    Front Plant Sci; 2020; 11():1108. PubMed ID: 32765575
    [No Abstract]   [Full Text] [Related]  

  • 2. Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae).
    Dillon SL; Shapter FM; Henry RJ; Cordeiro G; Izquierdo L; Lee LS
    Ann Bot; 2007 Nov; 100(5):975-89. PubMed ID: 17766842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic diversity, structure, gene flow and evolutionary relationships within the Sorghum bicolor wild-weedy-crop complex in a western African region.
    Sagnard F; Deu M; Dembélé D; Leblois R; Touré L; Diakité M; Calatayud C; Vaksmann M; Bouchet S; Mallé Y; Togola S; Traoré PC
    Theor Appl Genet; 2011 Nov; 123(7):1231-46. PubMed ID: 21811819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic structure and relationships within and between cultivated and wild sorghum (Sorghum bicolor (L.) Moench) in Kenya as revealed by microsatellite markers.
    Mutegi E; Sagnard F; Semagn K; Deu M; Muraya M; Kanyenji B; de Villiers S; Kiambi D; Herselman L; Labuschagne M
    Theor Appl Genet; 2011 Mar; 122(5):989-1004. PubMed ID: 21153801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanogenesis in the
    Cowan M; Møller BL; Norton S; Knudsen C; Crocoll C; Furtado A; Henry R; Blomstedt C; Gleadow RM
    Genes (Basel); 2022 Jan; 13(1):. PubMed ID: 35052482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic architecture and molecular regulation of sorghum domestication.
    Ge F; Xie P; Wu Y; Xie Q
    aBIOTECH; 2023 Mar; 4(1):57-71. PubMed ID: 37220542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement.
    Baillo EH; Kimotho RN; Zhang Z; Xu P
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31575043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation in production of cyanogenic glucosides during early plant development: A comparison of wild and domesticated sorghum.
    Cowan MF; Blomstedt CK; Møller BL; Henry RJ; Gleadow RM
    Phytochemistry; 2021 Apr; 184():112645. PubMed ID: 33482417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorghum: A Multipurpose Crop.
    Zheng H; Dang Y; Sui N
    J Agric Food Chem; 2023 Nov; 71(46):17570-17583. PubMed ID: 37933850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of cyanogenic glucosides in wild and domesticated Eusorghum taxa.
    Myrans H; Gleadow RM
    Plant Biol (Stuttg); 2022 Oct; 24(6):1084-1088. PubMed ID: 35727820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen availability and allocation in sorghum and its wild relatives: Divergent roles for cyanogenic glucosides.
    Myrans H; Vandegeer RK; Henry RJ; Gleadow RM
    J Plant Physiol; 2021; 258-259():153393. PubMed ID: 33667954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infra-specific folk taxonomy in sorghum (Sorghum bicolor (L.) Moench) in Ethiopia: folk nomenclature, classification, and criteria.
    Mekbib F
    J Ethnobiol Ethnomed; 2007 Dec; 3():38. PubMed ID: 18162135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of in situ mating systems in wild sorghum (Sorghum bicolor (L.) Moench) in Ethiopia using SSR-based progeny array data: implications for the spread of crop genes into the wild.
    Adugna A; Sweeney PM; Bekele E
    J Genet; 2013 Apr; 92(1):3-10. PubMed ID: 23640403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy.
    Silva TN; Thomas JB; Dahlberg J; Rhee SY; Mortimer JC
    J Exp Bot; 2022 Jan; 73(3):646-664. PubMed ID: 34644381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcript profiles of wild and domesticated sorghum under water-stressed conditions and the differential impact on dhurrin metabolism.
    Ananda GKS; Norton SL; Blomstedt C; Furtado A; Møller BL; Gleadow R; Henry RJ
    Planta; 2022 Jan; 255(2):51. PubMed ID: 35084593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A chromosome-scale genome sequence of sudangrass (Sorghum sudanense) highlights the genome evolution and regulation of dhurrin biosynthesis.
    Li J; Wang L; Bible PW; Tu W; Zheng J; Jin P; Liu Y; Du J; Zheng J; Wang YH; Zhan Q
    Theor Appl Genet; 2023 Mar; 136(3):60. PubMed ID: 36912984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water stress resilient cereal crops: Lessons from wild relatives.
    Toulotte JM; Pantazopoulou CK; Sanclemente MA; Voesenek LACJ; Sasidharan R
    J Integr Plant Biol; 2022 Feb; 64(2):412-430. PubMed ID: 35029029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenomic analysis reveals five independently evolved African forage grass clades in the genus Urochloa.
    Masters LE; Tomaszewska P; Schwarzacher T; Hackel J; Zuntini AR; Heslop-Harrison P; Vorontsova MS
    Ann Bot; 2024 May; 133(5-6):725-742. PubMed ID: 38365451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discordant Patterns of Introgression Suggest Historical Gene Flow into Thai Weedy Rice from Domesticated and Wild Relatives.
    Wedger MJ; Pusadee T; Wongtamee A; Olsen KM
    J Hered; 2019 Aug; 110(5):601-609. PubMed ID: 31062846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species.
    Woldesemayat AA; Modise DM; Gemeildien J; Ndimba BK; Christoffels A
    PLoS One; 2018; 13(3):e0192678. PubMed ID: 29590108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.