These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 3276559)
1. Inhibition of insulin-stimulated glucose transport in rat adipocytes by nucleoside transport inhibitors. Steinfelder HJ; Joost HG FEBS Lett; 1988 Jan; 227(2):215-9. PubMed ID: 3276559 [TBL] [Abstract][Full Text] [Related]
2. Phorbol esters imitate in rat fat-cells the full effect of insulin on glucose-carrier translocation, but not on 3-O-methylglucose-transport activity. Mühlbacher C; Karnieli E; Schaff P; Obermaier B; Mushack J; Rattenhuber E; Häring HU Biochem J; 1988 Feb; 249(3):865-70. PubMed ID: 3281656 [TBL] [Abstract][Full Text] [Related]
3. Glucose tolerance factor stimulates 3-O-methylglucose transport into isolated rat adipocytes. Tokuda M; Kashiwagi A; Wakamiya E; Oguni T; Mino M; Kagamiyama H Biochem Biophys Res Commun; 1987 May; 144(3):1237-42. PubMed ID: 3555500 [TBL] [Abstract][Full Text] [Related]
4. Mechanism for enhanced glucose transport response to insulin in adipose cells from chronically hyperinsulinemic rats. Increased translocation of glucose transporters from an enlarged intracellular pool. Kahn BB; Horton ES; Cushman SW J Clin Invest; 1987 Mar; 79(3):853-8. PubMed ID: 3029179 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the equilibrium exchange of nucleosides and 3-O-methylglucose in human erythrocytes and of the effects of cytochalasin B, phloretin and dipyridamole on their transport. Plagemann PG; Woffendin C Biochim Biophys Acta; 1987 May; 899(2):295-301. PubMed ID: 3580369 [TBL] [Abstract][Full Text] [Related]
6. Counter-regulation of insulin-stimulated glucose transport by catecholamines in the isolated rat adipose cell. Smith U; Kuroda M; Simpson IA J Biol Chem; 1984 Jul; 259(14):8758-63. PubMed ID: 6086611 [TBL] [Abstract][Full Text] [Related]
7. Effect of insulin and glucocorticoids on glucose transporters in rat adipocytes. Carter-Su C; Okamoto K Am J Physiol; 1987 Apr; 252(4 Pt 1):E441-53. PubMed ID: 3551626 [TBL] [Abstract][Full Text] [Related]
8. Nucleoside transport in rat erythrocytes: two components with differences in sensitivity to inhibition by nitrobenzylthioinosine and p-chloromercuriphenyl sulfonate. Jarvis SM; Young JD J Membr Biol; 1986; 93(1):1-10. PubMed ID: 3025447 [TBL] [Abstract][Full Text] [Related]
9. Glucagon inhibits insulin activation of glucose transport in rat adipocytes mainly through a postbinding process. Sato N; Irie M; Kajinuma H; Suzuki K Endocrinology; 1990 Sep; 127(3):1072-7. PubMed ID: 2201531 [TBL] [Abstract][Full Text] [Related]
10. Antimalarial action of nitrobenzylthioinosine in combination with purine nucleoside antimetabolites. Gero AM; Scott HV; O'Sullivan WJ; Christopherson RI Mol Biochem Parasitol; 1989 Apr; 34(1):87-97. PubMed ID: 2651920 [TBL] [Abstract][Full Text] [Related]
11. The stimulating effect of 3',5'-(cyclic)adenosine monophosphate and lipolytic hormones on 3-O-methylglucose transport and 45Ca2+ release in adipocytes and skeletal muscle of the rat. Rasmussen MJ; Clausen T Biochim Biophys Acta; 1982 Dec; 693(2):389-97. PubMed ID: 6297557 [TBL] [Abstract][Full Text] [Related]
12. The regulation of glucose transport by cAMP stimulators via three different mechanisms in rat and human adipocytes. Kashiwagi A; Huecksteadt TP; Foley JE J Biol Chem; 1983 Nov; 258(22):13685-92. PubMed ID: 6196354 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of nucleoside and nucleobase transport and nitrobenzylthioinosine binding by dilazep and hexobendine. Plagemann PG; Kraupp M Biochem Pharmacol; 1986 Aug; 35(15):2559-67. PubMed ID: 3741459 [TBL] [Abstract][Full Text] [Related]
14. Nucleoside transport in Walker 256 rat carcinosarcoma and S49 mouse lymphoma cells. Differences in sensitivity to nitrobenzylthioinosine and thiol reagents. Belt JA; Noel LD Biochem J; 1985 Dec; 232(3):681-8. PubMed ID: 3004414 [TBL] [Abstract][Full Text] [Related]
15. Measurement of adenosine metabolism and uptake in smooth muscle and effects of adenosine transport inhibitors. Baer HP; Vriend R J Pharmacol Exp Ther; 1984 May; 229(2):564-70. PubMed ID: 6609231 [TBL] [Abstract][Full Text] [Related]
16. Cycloheximide decreases glucose transporters in rat adipocyte plasma membranes without affecting insulin-stimulated glucose transport. Matthaei S; Olefsky JM; Karnieli E Biochem J; 1988 Apr; 251(2):491-7. PubMed ID: 3041964 [TBL] [Abstract][Full Text] [Related]
17. Induction of nucleoside transport sites into the host cell membrane of Babesia bovis infected erythrocytes. Gero AM Mol Biochem Parasitol; 1989 Jul; 35(3):269-76. PubMed ID: 2747745 [TBL] [Abstract][Full Text] [Related]
18. Interleukin-1 stimulates glucose transport in rat adipose cells. Evidence for receptor discrimination between IL-1 beta and IL-1 alpha. Garcia-Welsh A; Schneiderman JS; Baly DL FEBS Lett; 1990 Sep; 269(2):421-4. PubMed ID: 2205515 [TBL] [Abstract][Full Text] [Related]
19. Endotoxin-induced alterations in glucose transport in isolated adipocytes. Leach GJ; Spitzer JA Biochim Biophys Acta; 1981 Oct; 648(1):71-9. PubMed ID: 7028118 [TBL] [Abstract][Full Text] [Related]
20. Nucleoside transport in rat cerebral-cortical synaptosomes. Evidence for two types of nucleoside transporters. Lee CW; Jarvis SM Biochem J; 1988 Jan; 249(2):557-64. PubMed ID: 3342028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]