These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 32765801)
1. Thermally Induced Diffusion and Restructuring of Iron Triade (Fe, Co, Ni) Nanoparticles Passivated by Several Layers of Gold. Schnedlitz M; Knez D; Lasserus M; Hofer F; Fernández-Perea R; Hauser AW; Pilar de Lara-Castells M; Ernst WE J Phys Chem C Nanomater Interfaces; 2020 Jul; 124(30):16680-16688. PubMed ID: 32765801 [TBL] [Abstract][Full Text] [Related]
2. Computational Characterization of the Intermixing of Iron Triade (Fe, Co, and Ni) Surfaces and Sub-nanometric Clusters with Atomic Gold. López-Caballero P; Garsed R; de Lara-Castells MP ACS Omega; 2021 Jun; 6(24):16165-16175. PubMed ID: 34179662 [TBL] [Abstract][Full Text] [Related]
3. Effects of the Core Location on the Structural Stability of Ni-Au Core-Shell Nanoparticles. Schnedlitz M; Fernandez-Perea R; Knez D; Lasserus M; Schiffmann A; Hofer F; Hauser AW; de Lara-Castells MP; Ernst WE J Phys Chem C Nanomater Interfaces; 2019 Aug; 123(32):20037-20043. PubMed ID: 33014236 [TBL] [Abstract][Full Text] [Related]
4. Transmission electron microscope-induced structural evolution in amorphous Fe, Co, and Ni oxide nanoparticles. Latham AH; Williams ME Langmuir; 2008 Dec; 24(24):14195-202. PubMed ID: 19360944 [TBL] [Abstract][Full Text] [Related]
5. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: structure-activity relationship. Guo Y; Gu D; Jin Z; Du PP; Si R; Tao J; Xu WQ; Huang YY; Senanayake S; Song QS; Jia CJ; Schüth F Nanoscale; 2015 Mar; 7(11):4920-8. PubMed ID: 25631762 [TBL] [Abstract][Full Text] [Related]
6. Mixed-metal nanoparticles: phase transitions and diffusion in Au-VO clusters. Ernst WE; Lasserus M; Knez D; Hofer F; Hauser AW Faraday Discuss; 2023 Jan; 242(0):160-173. PubMed ID: 36178317 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the role of Au in improving catalytic activity of Ni nanoparticles for the formation of one-dimensional carbon nanostructures. Sharma R; Chee SW; Herzing A; Miranda R; Rez P Nano Lett; 2011 Jun; 11(6):2464-71. PubMed ID: 21604794 [TBL] [Abstract][Full Text] [Related]
9. TEM-induced structural evolution in amorphous Fe oxide nanoparticles. Latham AH; Wilson MJ; Schiffer P; Williams ME J Am Chem Soc; 2006 Oct; 128(39):12632-3. PubMed ID: 17002341 [TBL] [Abstract][Full Text] [Related]
10. Ferromagnetic resonance in nanomagnetic metal core and noble metal shell systems. Bala T; Enoki T; Prasad BL J Nanosci Nanotechnol; 2007 Sep; 7(9):3134-9. PubMed ID: 18019139 [TBL] [Abstract][Full Text] [Related]
11. Adsorption energy of small molecules on core-shell Fe@Au nanoparticles: tuning by shell thickness. Benoit M; Tarrat N; Morillo J Phys Chem Chem Phys; 2016 Apr; 18(13):9112-23. PubMed ID: 26971708 [TBL] [Abstract][Full Text] [Related]
12. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564 [TBL] [Abstract][Full Text] [Related]
13. Anti-cancer drug loaded iron-gold core-shell nanoparticles (Fe@Au) for magnetic drug targeting. Kayal S; Ramanujan RV J Nanosci Nanotechnol; 2010 Sep; 10(9):5527-39. PubMed ID: 21133071 [TBL] [Abstract][Full Text] [Related]
14. DFT study of Fe-Ni core-shell nanoparticles: stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth. Yang Z; Wang Q; Shan X; Li WQ; Chen GH; Zhu H J Chem Phys; 2015 Feb; 142(7):074306. PubMed ID: 25702014 [TBL] [Abstract][Full Text] [Related]
15. Size and chemical order dependence of magnetic-ordering temperature and spin structure in Fe@Ni and Ni@Fe core-shell nanoparticles. Mokkath JH Phys Chem Chem Phys; 2020 Mar; 22(11):6275-6281. PubMed ID: 32129368 [TBL] [Abstract][Full Text] [Related]
16. Environmental STEM Study of the Oxidation Mechanism for Iron and Iron Carbide Nanoparticles. LaGrow AP; Famiani S; Sergides A; Lari L; Lloyd DC; Takahashi M; Maenosono S; Boyes ED; Gai PL; Thanh NTK Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208096 [TBL] [Abstract][Full Text] [Related]
17. Au@Cu2O core-shell nanoparticles as chemiresistors for gas sensor applications: effect of potential barrier modulation on the sensing performance. Rai P; Khan R; Raj S; Majhi SM; Park KK; Yu YT; Lee IH; Sekhar PK Nanoscale; 2014 Jan; 6(1):581-8. PubMed ID: 24241354 [TBL] [Abstract][Full Text] [Related]
18. Strain-induced restructuring of the surface in core@shell nanoalloys. Panizon E; Ferrando R Nanoscale; 2016 Sep; 8(35):15911-9. PubMed ID: 27545724 [TBL] [Abstract][Full Text] [Related]
19. Characterisation of Co@Fe3O4 core@shell nanoparticles using advanced electron microscopy. Knappett BR; Abdulkin P; Ringe E; Jefferson DA; Lozano-Perez S; Rojas TC; Fernández A; Wheatley AE Nanoscale; 2013 Jul; 5(13):5765-72. PubMed ID: 23463298 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation. Park HY; Schadt MJ; Wang L; Lim II; Njoki PN; Kim SH; Jang MY; Luo J; Zhong CJ Langmuir; 2007 Aug; 23(17):9050-6. PubMed ID: 17629315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]