These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 32765839)

  • 1. clustifyr: an R package for automated single-cell RNA sequencing cluster classification.
    Fu R; Gillen AE; Sheridan RM; Tian C; Daya M; Hao Y; Hesselberth JR; Riemondy KA
    F1000Res; 2020; 9():223. PubMed ID: 32765839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones.
    Müller S; Cho A; Liu SJ; Lim DA; Diaz A
    Bioinformatics; 2018 Sep; 34(18):3217-3219. PubMed ID: 29897414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A component overlapping attribute clustering (COAC) algorithm for single-cell RNA sequencing data analysis and potential pathobiological implications.
    Peng H; Zeng X; Zhou Y; Zhang D; Nussinov R; Cheng F
    PLoS Comput Biol; 2019 Feb; 15(2):e1006772. PubMed ID: 30779739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scQCEA: a framework for annotation and quality control report of single-cell RNA-sequencing data.
    Nassiri I; Fairfax B; Lee A; Wu Y; Buck D; Piazza P
    BMC Genomics; 2023 Jul; 24(1):381. PubMed ID: 37415108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Cell Type Annotation R Packages on Single-cell RNA-seq Data.
    Huang Q; Liu Y; Du Y; Garmire LX
    Genomics Proteomics Bioinformatics; 2021 Apr; 19(2):267-281. PubMed ID: 33359678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random forest based similarity learning for single cell RNA sequencing data.
    Pouyan MB; Kostka D
    Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polled Digital Cell Sorter (p-DCS): Automatic identification of hematological cell types from single cell RNA-sequencing clusters.
    Domanskyi S; Szedlak A; Hawkins NT; Wang J; Paternostro G; Piermarocchi C
    BMC Bioinformatics; 2019 Jul; 20(1):369. PubMed ID: 31262249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SwarnSeq: An improved statistical approach for differential expression analysis of single-cell RNA-seq data.
    Das S; Rai SN
    Genomics; 2021 May; 113(3):1308-1324. PubMed ID: 33662531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scReQTL: an approach to correlate SNVs to gene expression from individual scRNA-seq datasets.
    Liu H; Prashant NM; Spurr LF; Bousounis P; Alomran N; Ibeawuchi H; Sein J; Słowiński P; Tsaneva-Atanasova K; Horvath A
    BMC Genomics; 2021 Jan; 22(1):40. PubMed ID: 33419390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IndepthPathway: an integrated tool for in-depth pathway enrichment analysis based on single-cell sequencing data.
    Lee S; Deng L; Wang Y; Wang K; Sartor MA; Wang XS
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37243667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data.
    Gardeux V; David FPA; Shajkofci A; Schwalie PC; Deplancke B
    Bioinformatics; 2017 Oct; 33(19):3123-3125. PubMed ID: 28541377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scAnno: a deconvolution strategy-based automatic cell type annotation tool for single-cell RNA-sequencing data sets.
    Liu H; Li H; Sharma A; Huang W; Pan D; Gu Y; Lin L; Sun X; Liu H
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37183449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CDSImpute: An ensemble similarity imputation method for single-cell RNA sequence dropouts.
    Azim R; Wang S; Dipu SA
    Comput Biol Med; 2022 Jul; 146():105658. PubMed ID: 35751187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scHD4E: Novel ensemble learning-based differential expression analysis method for single-cell RNA-sequencing data.
    Biswas B; Kumar N; Sugimoto M; Hoque MA
    Comput Biol Med; 2024 Aug; 178():108769. PubMed ID: 38897145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A statistical simulator scDesign for rational scRNA-seq experimental design.
    Li WV; Li JJ
    Bioinformatics; 2019 Jul; 35(14):i41-i50. PubMed ID: 31510652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DECENT: differential expression with capture efficiency adjustmeNT for single-cell RNA-seq data.
    Ye C; Speed TP; Salim A
    Bioinformatics; 2019 Dec; 35(24):5155-5162. PubMed ID: 31197307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.
    Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V
    Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scDeconv: an R package to deconvolve bulk DNA methylation data with scRNA-seq data and paired bulk RNA-DNA methylation data.
    Liu Y
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35453146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-fast scalable estimation of single-cell differentiation potency from scRNA-Seq data.
    Teschendorff AE; Maity AK; Hu X; Weiyan C; Lechner M
    Bioinformatics; 2021 Jul; 37(11):1528-1534. PubMed ID: 33244588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UICPC: Centrality-based clustering for scRNA-seq data analysis without user input.
    Chowdhury HA; Bhattacharyya DK; Kalita JK
    Comput Biol Med; 2021 Oct; 137():104820. PubMed ID: 34508973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.