These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32766460)

  • 1. Direct Observation and Analysis of the Halo-Amino-Nitro Alkane Functional Group.
    Crocker MS; Foy H; Tokumaru K; Dudding T; Pink M; Johnston JN
    Chem; 2019 May; 5(5):1248-1264. PubMed ID: 32766460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of
    Crocker MS; Deng Z; Johnston JN
    J Am Chem Soc; 2022 Sep; 144(37):16708-16714. PubMed ID: 36067492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1,3,4-Oxadiazole and Heteroaromatic-Fused 1,2,4-Triazole Synthesis using Diverted Umpolung Amide Synthesis.
    Tokumaru K; Bera K; Johnston JN
    Synthesis (Stuttg); 2017 Oct; 49(20):4670-4675. PubMed ID: 29507449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Umpolung amide synthesis using substoichiometric N-iodosuccinimide (NIS) and oxygen as a terminal oxidant.
    Schwieter KE; Shen B; Shackleford JP; Leighty MW; Johnston JN
    Org Lett; 2014 Sep; 16(18):4714-7. PubMed ID: 25198239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of competing anaerobic and aerobic pathways in umpolung amide synthesis allows for site-selective amide 18O-labeling.
    Shackleford JP; Shen B; Johnston JN
    Proc Natl Acad Sci U S A; 2012 Jan; 109(1):44-6. PubMed ID: 22184227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Umpolung reactivity in amide and peptide synthesis.
    Shen B; Makley DM; Johnston JN
    Nature; 2010 Jun; 465(7301):1027-32. PubMed ID: 20577205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A one-pot amidation of primary nitroalkanes.
    Schwieter KE; Johnston JN
    Chem Commun (Camb); 2016 Jan; 52(1):152-5. PubMed ID: 26506056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The inverted ketene synthon: a double umpolung approach to enantioselective β
    Vishe M; Johnston JN
    Chem Sci; 2019 Jan; 10(4):1138-1143. PubMed ID: 30774911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Davis-Beirut Reaction: Diverse Chemistries of Highly Reactive Nitroso Intermediates in Heterocycle Synthesis.
    Zhu JS; Haddadin MJ; Kurth MJ
    Acc Chem Res; 2019 Aug; 52(8):2256-2265. PubMed ID: 31328502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silyl imine electrophiles in enantioselective catalysis: a Rosetta Stone for peptide homologation, enabling diverse N-protected aryl glycines from aldehydes in three steps.
    Makley DM; Johnston JN
    Org Lett; 2014 Jun; 16(11):3146-9. PubMed ID: 24828455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brønsted Base-Catalyzed Umpolung Intramolecular Cyclization of Alkynyl Imines.
    Kondoh A; Terada M
    Chemistry; 2018 Mar; 24(16):3998-4001. PubMed ID: 29341333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitroalkanes as Versatile Nucleophiles for Enzymatic Synthesis of Noncanonical Amino Acids.
    Romney DK; Sarai NS; Arnold FH
    ACS Catal; 2019 Sep; 9(9):8726-8730. PubMed ID: 33274115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioselective synthesis of α-oxy amides via Umpolung amide synthesis.
    Leighty MW; Shen B; Johnston JN
    J Am Chem Soc; 2012 Sep; 134(37):15233-6. PubMed ID: 22967461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Chemoselective Synthesis of Indolizidine Lactams by SmI2 -Induced Umpolung of the Amide Bond via Aminoketyl Radicals: Efficient Entry to Alkaloid Scaffolds.
    Shi S; Lalancette R; Szostak R; Szostak M
    Chemistry; 2016 Aug; 22(34):11949-53. PubMed ID: 27418326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational studies of nucleophilic substitution at carbonyl carbon: the S(N)2 mechanism versus the tetrahedral intermediate in organic synthesis.
    Fox JM; Dmitrenko O; Liao LA; Bach RD
    J Org Chem; 2004 Oct; 69(21):7317-28. PubMed ID: 15471486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational study on the mechanism of ynamide-mediated amide bond formation from carboxylic acids and amines.
    Zhang SL; Wan HX; Deng ZQ
    Org Biomol Chem; 2017 Aug; 15(30):6367-6374. PubMed ID: 28717802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Strategies for the Functionalization of Carbonyl Derivatives via α-Umpolung: From Enolates to Enolonium Ions.
    Spieß P; Shaaban S; Kaiser D; Maulide N
    Acc Chem Res; 2023 Jun; 56(12):1634-1644. PubMed ID: 37226674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral Amines via Enantioselective π-Allyliridium-
    Stivala CE; Zbieg JR; Liu P; Krische MJ
    Acc Chem Res; 2022 Aug; 55(15):2138-2147. PubMed ID: 35830564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Substituting Ability of Nitronate versus Enolate for Direct Substitution of a Nitro Group.
    Mukaijo Y; Yokoyama S; Nishiwaki N
    Molecules; 2020 Apr; 25(9):. PubMed ID: 32353998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S
    Fang W; Luo ZW; Wang YC; Zhou W; Li L; Chen Y; Zhang X; Dai M; Dai JJ
    Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202317570. PubMed ID: 38366960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.