BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32766570)

  • 1. Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis.
    Zhou Z; Sodha V; Siddiquee MMR; Feng R; Tajbakhsh N; Gotway MB; Liang J
    Med Image Comput Comput Assist Interv; 2019 Oct; 11767():384-393. PubMed ID: 32766570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Models Genesis.
    Zhou Z; Sodha V; Pang J; Gotway MB; Liang J
    Med Image Anal; 2021 Jan; 67():101840. PubMed ID: 33188996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning Semantics-enriched Representation via Self-discovery, Self-classification, and Self-restoration.
    Haghighi F; Hosseinzadeh Taher MR; Zhou Z; Gotway MB; Liang J
    Med Image Comput Comput Assist Interv; 2020 Oct; 12261():137-147. PubMed ID: 35695848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transferable Visual Words: Exploiting the Semantics of Anatomical Patterns for Self-Supervised Learning.
    Haghighi F; Taher MRH; Zhou Z; Gotway MB; Liang J
    IEEE Trans Med Imaging; 2021 Oct; 40(10):2857-2868. PubMed ID: 33617450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Systematic Benchmarking Analysis of Transfer Learning for Medical Image Analysis.
    Hosseinzadeh Taher MR; Haghighi F; Feng R; Gotway MB; Liang J
    Domain Adapt Represent Transf Afford Healthc AI Resour Divers Glob Health (2021); 2021; 12968():3-13. PubMed ID: 35713581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DrasCLR: A self-supervised framework of learning disease-related and anatomy-specific representation for 3D lung CT images.
    Yu K; Sun L; Chen J; Reynolds M; Chaudhary T; Batmanghelich K
    Med Image Anal; 2024 Feb; 92():103062. PubMed ID: 38086236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveraging 2D Deep Learning ImageNet-trained models for Native 3D Medical Image Analysis.
    Baheti B; Pati S; Menze B; Bakas S
    Brainlesion; 2023; 13769():68-79. PubMed ID: 37928819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disentangled representation learning in cardiac image analysis.
    Chartsias A; Joyce T; Papanastasiou G; Semple S; Williams M; Newby DE; Dharmakumar R; Tsaftaris SA
    Med Image Anal; 2019 Dec; 58():101535. PubMed ID: 31351230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling machine learning in X-ray-based procedures via realistic simulation of image formation.
    Unberath M; Zaech JN; Gao C; Bier B; Goldmann F; Lee SC; Fotouhi J; Taylor R; Armand M; Navab N
    Int J Comput Assist Radiol Surg; 2019 Sep; 14(9):1517-1528. PubMed ID: 31187399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
    Zhou X; Takayama R; Wang S; Hara T; Fujita H
    Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parts2Whole: Self-supervised Contrastive Learning via Reconstruction.
    Feng R; Zhou Z; Gotway MB; Liang J
    Domain Adapt Represent Transf Distrib Collab Learn (2020); 2020 Oct; 12444():85-95. PubMed ID: 35713588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-supervised 3D anatomy segmentation using self-distilled masked image transformer (SMIT).
    Jiang J; Tyagi N; Tringale K; Crane C; Veeraraghavan H
    Med Image Comput Comput Assist Interv; 2022 Sep; 13434():556-566. PubMed ID: 36468915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
    Tajbakhsh N; Shin JY; Gurudu SR; Hurst RT; Kendall CB; Gotway MB; Jianming Liang
    IEEE Trans Med Imaging; 2016 May; 35(5):1299-1312. PubMed ID: 26978662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Building medical image classifiers with very limited data using segmentation networks.
    Wong KCL; Syeda-Mahmood T; Moradi M
    Med Image Anal; 2018 Oct; 49():105-116. PubMed ID: 30119038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rubik's Cube+: A self-supervised feature learning framework for 3D medical image analysis.
    Zhu J; Li Y; Hu Y; Ma K; Zhou SK; Zheng Y
    Med Image Anal; 2020 Aug; 64():101746. PubMed ID: 32544840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrastive Self-Supervised Pre-Training for Video Quality Assessment.
    Chen P; Li L; Wu J; Dong W; Shi G
    IEEE Trans Image Process; 2022; 31():458-471. PubMed ID: 34874856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DiRA: Discriminative, Restorative, and Adversarial Learning for Self-supervised Medical Image Analysis.
    Haghighi F; Taher MRH; Gotway MB; Liang J
    Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit; 2022 Jun; 2022():20792-20802. PubMed ID: 36313959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning Based HPV Status Prediction for Oropharyngeal Cancer Patients.
    Lang DM; Peeken JC; Combs SE; Wilkens JJ; Bartzsch S
    Cancers (Basel); 2021 Feb; 13(4):. PubMed ID: 33668646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CAiD: Context-Aware Instance Discrimination for Self-supervised Learning in Medical Imaging.
    Taher MRH; Haghighi F; Gotway MB; Liang J
    Proc Mach Learn Res; 2022 Jul; 172():535-551. PubMed ID: 36579134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D deeply supervised network for automated segmentation of volumetric medical images.
    Dou Q; Yu L; Chen H; Jin Y; Yang X; Qin J; Heng PA
    Med Image Anal; 2017 Oct; 41():40-54. PubMed ID: 28526212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.