BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

37 related articles for article (PubMed ID: 32766591)

  • 1. Massive-scale biological activity-based modeling identifies novel antiviral leads against SARS-CoV-2.
    Huang R; Xu M; Zhu H; Chen CZ; Lee EM; He S; Shamim K; Bougie D; Huang W; Hall MD; Lo D; Simeonov A; Austin CP; Qiu X; Tang H; Zheng W
    bioRxiv; 2020 Jul; ():. PubMed ID: 32766591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Fluorescence-Based, High-Throughput SARS-CoV-2 3CL
    Froggatt HM; Heaton BE; Heaton NS
    J Virol; 2020 Oct; 94(22):. PubMed ID: 32843534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational design of potent anti-COVID-19 main protease drugs: An extensive multi-spectrum in silico approach.
    Ahmad S; Waheed Y; Ismail S; Najmi MH; Ansari JK
    J Mol Liq; 2021 May; 330():115636. PubMed ID: 33612899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-SARS-CoV-2 Potential of Artemisinins In Vitro.
    Cao R; Hu H; Li Y; Wang X; Xu M; Liu J; Zhang H; Yan Y; Zhao L; Li W; Zhang T; Xiao D; Guo X; Li Y; Yang J; Hu Z; Wang M; Zhong W
    ACS Infect Dis; 2020 Sep; 6(9):2524-2531. PubMed ID: 32786284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid in vitro assays for screening neutralizing antibodies and antivirals against SARS-CoV-2.
    Park JG; Oladunni FS; Chiem K; Ye C; Pipenbrink M; Moran T; Walter MR; Kobie J; Martinez-Sobrido L
    J Virol Methods; 2021 Jan; 287():113995. PubMed ID: 33068703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of Potent Membrane Fusion Inhibitors against SARS-CoV-2, an Emerging Coronavirus with High Fusogenic Activity.
    Zhu Y; Yu D; Yan H; Chong H; He Y
    J Virol; 2020 Jul; 94(14):. PubMed ID: 32376627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutralization of SARS-CoV-2 Spike Protein via Natural Compounds: A Multilayered High Throughput Virtual Screening Approach.
    Dhasmana A; Kashyap VK; Dhasmana S; Kotnala S; Haque S; Ashraf GM; Jaggi M; Yallapu MM; Chauhan SC
    Curr Pharm Des; 2020; 26(41):5300-5309. PubMed ID: 32867645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a simple, interpretable and easily transferable QSAR model for quick screening antiviral databases in search of novel 3C-like protease (3CLpro) enzyme inhibitors against SARS-CoV diseases.
    Kumar V; Roy K
    SAR QSAR Environ Res; 2020 Jul; 31(7):511-526. PubMed ID: 32543892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of Potent SARS-CoV-2 Inhibitors from Approved Antiviral Drugs via Docking and Virtual Screening.
    Chtita S; Belhassan A; Aouidate A; Belaidi S; Bouachrine M; Lakhlifi T
    Comb Chem High Throughput Screen; 2021; 24(3):441-454. PubMed ID: 32748740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathogenesis-directed therapy of 2019 novel coronavirus disease.
    Stratton CW; Tang YW; Lu H
    J Med Virol; 2021 Mar; 93(3):1320-1342. PubMed ID: 33073355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of potent inhibitors for SARS-CoV-2's main protease by ligand-based/structure-based virtual screening, MD simulations, and binding energy calculations.
    Abu-Saleh AAA; Awad IE; Yadav A; Poirier RA
    Phys Chem Chem Phys; 2020 Oct; 22(40):23099-23106. PubMed ID: 33025993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of an Antiviral Compound from the Pandemic Response Box that Efficiently Inhibits SARS-CoV-2 Infection In Vitro.
    Holwerda M; V'kovski P; Wider M; Thiel V; Dijkman R
    Microorganisms; 2020 Nov; 8(12):. PubMed ID: 33256227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiviral Activity of the Propylamylatin
    Brown AN; Strobel G; Hanrahan KC; Sears J
    Viruses; 2021 Mar; 13(3):. PubMed ID: 33807769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Binding Mechanisms of Fusion Broad Range Anti-Infective Protein Ricin A Chain Mutant-Pokeweed Antiviral Protein 1 (RTAM-PAP1) against SARS-CoV-2 Key Proteins in Silico.
    Hassan Y; Ogg S; Ge H
    Toxins (Basel); 2020 Sep; 12(9):. PubMed ID: 32957454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repurposing drugs against the main protease of SARS-CoV-2: mechanism-based insights supported by available laboratory and clinical data.
    Chakraborti S; Bheemireddy S; Srinivasan N
    Mol Omics; 2020 Oct; 16(5):474-491. PubMed ID: 32696772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation.
    Choudhary MI; Shaikh M; Tul-Wahab A; Ur-Rahman A
    PLoS One; 2020; 15(7):e0235030. PubMed ID: 32706783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting the Dimerization of the Main Protease of Coronaviruses: A Potential Broad-Spectrum Therapeutic Strategy.
    Goyal B; Goyal D
    ACS Comb Sci; 2020 Jun; 22(6):297-305. PubMed ID: 32402186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological activity-based modeling identifies antiviral leads against SARS-CoV-2.
    Huang R; Xu M; Zhu H; Chen CZ; Zhu W; Lee EM; He S; Zhang L; Zhao J; Shamim K; Bougie D; Huang W; Xia M; Hall MD; Lo D; Simeonov A; Austin CP; Qiu X; Tang H; Zheng W
    Nat Biotechnol; 2021 Jun; 39(6):747-753. PubMed ID: 33623157
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.