These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 32766610)
41. Further Enhancement of Mechanical Properties of Conducting Rubber Composites Based on Multiwalled Carbon Nanotubes and Nitrile Rubber by Solvent Treatment. Keinänen P; Das A; Vuorinen J Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30249059 [TBL] [Abstract][Full Text] [Related]
42. The Preparation and Properties of Thermo-reversibly Cross-linked Rubber Via Diels-Alder Chemistry. Polgar LM; van Duin M; Picchioni F J Vis Exp; 2016 Aug; (114):. PubMed ID: 27583665 [TBL] [Abstract][Full Text] [Related]
43. Electron tomography provides a direct link between the Payne effect and the inter-particle spacing of rubber composites. Staniewicz L; Vaudey T; Degrandcourt C; Couty M; Gaboriaud F; Midgley P Sci Rep; 2014 Dec; 4():7389. PubMed ID: 25487130 [TBL] [Abstract][Full Text] [Related]
44. Silane Treatment as an Effective Way of Improving the Reinforcing Activity of Carbon Nanofibers in Nitrile Rubber Composites. Szadkowski B; Marzec A; Rybiński P Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32784574 [TBL] [Abstract][Full Text] [Related]
45. Synthesis of Low Temperature Resistant Hydrogenated Nitrile Rubber Based on Esterification Reaction. Wang L; Ni Y; Qi X; Zhang L; Yue D Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883600 [TBL] [Abstract][Full Text] [Related]
46. Transport characteristics of organic solvents through carbon nanotube filled styrene butadiene rubber nanocomposites: the influence of rubber-filler interaction, the degree of reinforcement and morphology. Abraham J; Maria HJ; George SC; Kalarikkal N; Thomas S Phys Chem Chem Phys; 2015 May; 17(17):11217-28. PubMed ID: 25829168 [TBL] [Abstract][Full Text] [Related]
47. Effects of organic components in cuttlebone on the morphological and mechanical properties of peroxide cross-linked cuttlebone/natural rubber composites. Chongcharoenchaikul T; Miyaji K; Junkong P; Poompradub S; Ikeda Y RSC Adv; 2022 May; 12(22):13557-13565. PubMed ID: 35530387 [TBL] [Abstract][Full Text] [Related]
48. Styrene-butadiene rubber/halloysite nanotubes composites modified by epoxidized natural rubber. Jia Z; Luo Y; Yang S; Du M; Guo B; Jia D J Nanosci Nanotechnol; 2011 Dec; 11(12):10958-62. PubMed ID: 22409034 [TBL] [Abstract][Full Text] [Related]
49. Characteristics of styrene-butadiene rubber/silica/Nanoprene compounds for application in tire tread. Seo B; Kang J; Jang S; Kang Y; Kim W J Nanosci Nanotechnol; 2013 Mar; 13(3):2179-88. PubMed ID: 23755663 [TBL] [Abstract][Full Text] [Related]
50. Thermoplastic Elastomeric Composites Filled with Lignocellulose Bioadditives. Part 1: Morphology, Processing, Thermal and Rheological Properties. Miedzianowska J; Masłowski M; Strzelec K Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32244584 [TBL] [Abstract][Full Text] [Related]
51. Buffing dust as a filler of carboxylated butadiene-acrylonitrile rubber and butadiene-acrylonitrile rubber. Chronska K; Przepiorkowska A J Hazard Mater; 2008 Mar; 151(2-3):348-55. PubMed ID: 17629616 [TBL] [Abstract][Full Text] [Related]
52. Chrome-tanned leather shavings as a filler of butadiene-acrylonitrile rubber. Przepiórkowska A; Chrońska K; Zaborski M J Hazard Mater; 2007 Mar; 141(1):252-7. PubMed ID: 16942836 [TBL] [Abstract][Full Text] [Related]
53. Impact of Basalt Filler on Thermal and Mechanical Properties, as Well as Fire Hazard, of Silicone Rubber Composites, Including Ceramizable Composites. Rybiński P; Syrek B; Żukowski W; Bradło D; Imiela M; Anyszka R; Blume A; Verbouwe W Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31366158 [TBL] [Abstract][Full Text] [Related]
54. Enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the interface. Chen L; Chai S; Liu K; Ning N; Gao J; Liu Q; Chen F; Fu Q ACS Appl Mater Interfaces; 2012 Aug; 4(8):4398-404. PubMed ID: 22856591 [TBL] [Abstract][Full Text] [Related]
55. Branched EHNBR and its properties with enhanced low-temperature performance and oil resistance. Liang L; Dong J; Yue D RSC Adv; 2019 Oct; 9(55):32130-32136. PubMed ID: 35530803 [TBL] [Abstract][Full Text] [Related]
56. Effects of different surface modification and contents on municipal solid waste incineration fly ash/epoxy composites. Goh CK; Valavan SE; Low TK; Tang LH Waste Manag; 2016 Dec; 58():309-315. PubMed ID: 27267794 [TBL] [Abstract][Full Text] [Related]
57. Application and Properties of Polyglycolic Acid as a Degradation Agent in MPU/HNBR Degradable Elastomer Composites for Dissolvable Frac Plugs. Cheng K; Yuan M; Zhang Y; Sun N; Peng B Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38256980 [TBL] [Abstract][Full Text] [Related]
58. Preparation and mechanical properties of rubber composites reinforced with carbon nanohorns. Isshiki T; Hashimoto M; Morii M; Ota Y; Kaneda K; Takahashi H; Yudasaka M; Iijima S; Okino F J Nanosci Nanotechnol; 2010 Jun; 10(6):3810-4. PubMed ID: 20355372 [TBL] [Abstract][Full Text] [Related]
59. A novel non-aqueous sol-gel route for the in situ synthesis of high loaded silica-rubber nanocomposites. Wahba L; D'Arienzo M; Dirè S; Donetti R; Hanel T; Morazzoni F; Niederberger M; Santo N; Tadiello L; Scotti R Soft Matter; 2014 Apr; 10(13):2234-44. PubMed ID: 24651692 [TBL] [Abstract][Full Text] [Related]
60. On a Biobased Epoxy Vitrimer from a Cardanol Derivative Prepared by a Simple Thiol-Epoxy "Click" Reaction. Ferretti F; Damonte G; Cantamessa F; Arrigo R; Athanassiou A; Zych A; Fina A; Monticelli O ACS Omega; 2024 Jan; 9(1):1242-1250. PubMed ID: 38222589 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]