BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

43 related articles for article (PubMed ID: 32766639)

  • 1. A turn-on fluorescent sensor based on carbon dots from Sophora japonica leaves for the detection of glyphosate.
    Hou J; Wang X; Lan S; Zhang C; Hou C; He Q; Huo D
    Anal Methods; 2020 Sep; 12(33):4130-4138. PubMed ID: 32766639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two swords combination: Smartphone-assisted ratiometric fluorescent and paper sensors for dual-mode detection of glyphosate in edible malt.
    Deng K; Guo H; Li X; Li T; Di T; Ma R; Lei D; Zhang Y; Wang J; Kong W
    Food Chem; 2024 Oct; 454():139744. PubMed ID: 38797096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive fluorescent detection of pesticides in real sample by using green carbon dots.
    Ashrafi Tafreshi F; Fatahi Z; Ghasemi SF; Taherian A; Esfandiari N
    PLoS One; 2020; 15(3):e0230646. PubMed ID: 32208468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Dual-Mode Detection Sensor Based on Nitrogen-Doped Carbon Dots for Visual Detection of Fe(III) and Ascorbic Acid via a Smartphone.
    Kayani KF; Abdullah CN
    J Fluoresc; 2024 Feb; ():. PubMed ID: 38300485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ratiometric Sensing of Glyphosate in Water Using Dual Fluorescent Carbon Dots.
    Clermont-Paquette A; Mendoza DA; Sadeghi A; Piekny A; Naccache R
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green and Low-temperature Synthesis of Carbon Dots for Simple Detection of Kaempferol.
    Zeng H; Peng H; He H; Feng J; Sun Y; He H; Li L
    J Fluoresc; 2023 Sep; 33(5):1971-1979. PubMed ID: 36933122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-doped carbon dots for the determination of Al
    Yang D; Shao T; Wang X; Hong M; Li R; Li C; Yue Q
    Mikrochim Acta; 2024 Jan; 191(1):78. PubMed ID: 38182922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxyl-Rich Carbon Dots as Highly Selective and Sensitive Fluorescent Sensor for Detection of Fe
    Wang X; Zhao Y; Wang T; Liang Y; Zhao X; Tang K; Guan Y; Wang H
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiral CDs-based fluorescence sensor for rapid and specific sensing K
    Yin X; Wei S; Zhai C; Wang B; Zhang H; Wang C; Song X; Sun G; Jiang C
    Food Chem; 2024 Jan; 432():137207. PubMed ID: 37657345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon quantum dots as a turn-on fluorescent probe for the sensitive detection of Cd
    Zhou Y; Chen G; Ma C; Yang T; Li L; Gu J; Zhu C; Hu A; Li X; Guan W; Zhang W
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Sep; 317():124453. PubMed ID: 38749201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An 'on-off-on' fluorescent switch based on a luminous covalent organic framework for the rapid and selective detection of glyphosate.
    Fan J; Li J; Zhou W; Gao H; Lu R; Guo H
    Luminescence; 2023 Oct; 38(10):1729-1737. PubMed ID: 37400417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turn-Off Fluorescence Sensor for the Detection of Ferric Ion in Water Using Green Synthesized Wrightia coccinea Carbon Quantum Dot.
    Jose J; Mohanraj R; G K S; K P G; Jacob JM
    J Fluoresc; 2024 May; ():. PubMed ID: 38767724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reed-derived fluorescent carbon dots as highly selective probes for detecting Fe
    Wei G; Zhao Z; Du J; Li P; Sun Z; Huo L; Gao Y
    RSC Adv; 2019 Jul; 9(38):21715-21723. PubMed ID: 35518891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An on-off-on fluorescent probe for the detection of glyphosate based on a Cu
    Zhao S; Shi L; Zhang X; Sun X; Zhu W; Yu L
    Anal Methods; 2024 Feb; 16(9):1341-1346. PubMed ID: 38334227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of dual-emission fluorescent carbon nanodots for a multifunctional probe.
    Cheng CW; Lo KM; Li MF; Chiu TC; Hu CC
    RSC Adv; 2021 Dec; 11(63):39958-39965. PubMed ID: 35494123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green one-step synthesis of mushroom-derived carbon dots as fluorescent sensors for Fe
    Klongklaw K; Phiromkaew B; Kiatsuksri P; Kankit B; Anantachaisilp S; Wechakorn K
    RSC Adv; 2023 Oct; 13(44):30869-30875. PubMed ID: 37869393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiquantitative and visual detection of ferric ions in real samples using a fluorescent paper-based analytical device constructed with green emitting carbon dots.
    He M; Xiao Y; Wei Y; Zheng B
    RSC Adv; 2023 Oct; 13(45):31720-31727. PubMed ID: 37908650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fluorescence ionic probe utilizing Cu
    Che S; Zhuge Y; Shao X; Peng X; Fu H; She Y
    Food Chem; 2024 Jul; 447():138859. PubMed ID: 38479145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid sequential detection of Al
    Meng Z; Kuang Z; Song R; Fan J; Wu X; Pan C; Lu R; Zhou W; Gao H
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Sep; 317():124358. PubMed ID: 38723462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-rich carbon nanosphere as fluorescent nanoprobe for intracellular iron.
    Pachpatil PK; Kanojia SV; Raut V; Potnis A; Goswami D
    Talanta; 2024 Jun; 278():126454. PubMed ID: 38924992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.