These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32766643)

  • 1. Construction of core-shell microcapsules
    Jin S; Wei X; Ren J; Jiang Z; Abell C; Yu Z
    Lab Chip; 2020 Aug; 20(17):3104-3108. PubMed ID: 32766643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled fabrication of multi-core alginate microcapsules.
    Eqbal MD; Gundabala V
    J Colloid Interface Sci; 2017 Dec; 507():27-34. PubMed ID: 28780332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile microfluidic production of composite polymer core-shell microcapsules and crescent-shaped microparticles.
    Ekanem EE; Zhang Z; Vladisavljević GT
    J Colloid Interface Sci; 2017 Jul; 498():387-394. PubMed ID: 28343136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Fabrication of Core-Shell Microcapsules carrying Human Pluripotent Stem Cell Spheroids.
    Gwon K; Hong HJ; Gonzalez-Suarez AM; Stybayeva G; Revzin A
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34723935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Microcapsules with Hybrid Shells Made via Sol-Gel Reaction within Double Emulsions.
    Moore DG; Brignoli JVA; Rühs PA; Studart AR
    Langmuir; 2017 Sep; 33(36):9007-9017. PubMed ID: 28813598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of microcapsules shell structure to preserve labile compounds: A comparison between microfluidics and conventional homogenization method.
    Ravanfar R; Comunian TA; Dando R; Abbaspourrad A
    Food Chem; 2018 Feb; 241():460-467. PubMed ID: 28958554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer Capsules with Tunable Shell Thickness Synthesized via Janus-to-core shell Transition of Biphasic Droplets Produced in a Microfluidic Flow-Focusing Device.
    Xu S; Nisisako T
    Sci Rep; 2020 Mar; 10(1):4549. PubMed ID: 32165712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid.
    Kim C; Chung S; Kim YE; Lee KS; Lee SH; Oh KW; Kang JY
    Lab Chip; 2011 Jan; 11(2):246-52. PubMed ID: 20967338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcapsules with Distinct Dual-Layer Shells and Their Applications for the Encapsulation, Preservation, and Slow Release of Hydrophilic Small Molecules.
    Hu Y; Pérez-Mercader J
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41640-41648. PubMed ID: 31595738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple One-Step and Rapid Patterning of PDMS Microfluidic Device Wettability for PDMS Shell Production.
    Feng C; Takahashi K; Zhu J
    Front Bioeng Biotechnol; 2022; 10():891213. PubMed ID: 35519623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of Ultra-Thin-Shell Microcapsules Using Osmolarity-Controlled Swelling Method.
    Guo J; Hou L; Hou J; Yu J; Hu Q
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32340189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Fabrication of Phase-Inverted Microcapsules with Asymmetric Shell Membranes with Graded Porosity.
    Wu Z; Werner JG; Weitz DA
    ACS Macro Lett; 2021 Jan; 10(1):116-121. PubMed ID: 35548985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatically Directed Self-Assembly of Ultrathin Supramolecular Polymer Microcapsules.
    Parker RM; Zhang J; Zheng Y; Coulston RJ; Smith CA; Salmon AR; Yu Z; Scherman OA; Abell C
    Adv Funct Mater; 2015 Jul; 25(26):4091-4100. PubMed ID: 26213532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silica-shell/oil-core microcapsules with controlled shell thickness and their breakage stress.
    O'Sullivan M; Zhang Z; Vincent B
    Langmuir; 2009 Jul; 25(14):7962-6. PubMed ID: 19402651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core-shell structure microcapsules with dual pH-responsive drug release function.
    Yang CH; Wang CY; Grumezescu AM; Wang AH; Hsiao CJ; Chen ZY; Huang KS
    Electrophoresis; 2014 Sep; 35(18):2673-80. PubMed ID: 24917513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogel Encapsulation of Cells in Core-Shell Microcapsules for Cell Delivery.
    Nguyen DK; Son YM; Lee NE
    Adv Healthc Mater; 2015 Jul; 4(10):1537-44. PubMed ID: 25963828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometric screening of core/shell hydrogel microcapsules using a tapered microchannel with interdigitated electrodes.
    Niu Y; Qi L; Zhang F; Zhao Y
    Biosens Bioelectron; 2018 Jul; 112():162-169. PubMed ID: 29704784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designer polymer-based microcapsules made using microfluidics.
    Chen PW; Erb RM; Studart AR
    Langmuir; 2012 Jan; 28(1):144-52. PubMed ID: 22118302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic fabrication of stable gas-filled microcapsules for acoustic contrast enhancement.
    Abbaspourrad A; Duncanson WJ; Lebedeva N; Kim SH; Zhushma AP; Datta SS; Dayton PA; Sheiko SS; Rubinstein M; Weitz DA
    Langmuir; 2013 Oct; 29(40):12352-7. PubMed ID: 24066971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.