These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 32766663)

  • 1. Controlling the structures of organic semiconductor-quantum dot nanocomposites through ligand shell chemistry.
    Toolan DTW; Weir MP; Kilbride RC; Willmott JR; King SM; Xiao J; Greenham NC; Friend RH; Rao A; Jones RAL; Ryan AJ
    Soft Matter; 2020 Sep; 16(34):7970-7981. PubMed ID: 32766663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol-Anchored TIPS-Tetracene Ligands with Quantitative Triplet Energy Transfer to PbS Quantum Dots and Improved Thermal Stability.
    Gray V; Zhang Z; Dowland S; Allardice JR; Alvertis AM; Xiao J; Greenham NC; Anthony JE; Rao A
    J Phys Chem Lett; 2020 Sep; 11(17):7239-7244. PubMed ID: 32787302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage.
    Kroupa DM; Arias DH; Blackburn JL; Carroll GM; Granger DB; Anthony JE; Beard MC; Johnson JC
    Nano Lett; 2018 Feb; 18(2):865-873. PubMed ID: 29364676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triggered aggregation of PbS nanocrystal dispersions; towards directing the morphology of hybrid polymer films using a removable bilinker ligand.
    Rhodes R; O'Brien P; Saunders BR
    J Colloid Interface Sci; 2011 Jun; 358(1):151-9. PubMed ID: 21453925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PbS quantum dots as additives in methylammonium halide perovskite solar cells: the effect of quantum dot capping.
    Ngo TT; Masi S; Mendez PF; Kazes M; Oron D; SerĂ³ IM
    Nanoscale Adv; 2019 Oct; 1(10):4109-4118. PubMed ID: 36132121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling Electronic Coupling of Acene Chromophores on Quantum Dot Surfaces through Variable-Concentration Ligand Exchange.
    Martinez MS; Nolen MA; Pompetti NF; Richter LJ; Farberow CA; Johnson JC; Beard MC
    ACS Nano; 2023 Aug; 17(15):14916-14929. PubMed ID: 37494884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Halide-, Hybrid-, and Perovskite-Functionalized Light Absorbing Quantum Materials of p-i-n Heterojunction Solar Cells.
    Beygi H; Sajjadi SA; Babakhani A; Young JF; van Veggel FCJM
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30283-30295. PubMed ID: 30107115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamic surface chemistry of colloidal metal chalcogenide quantum dots.
    Grisorio R; Quarta D; Fiore A; Carbone L; Suranna GP; Giansante C
    Nanoscale Adv; 2019 Sep; 1(9):3639-3646. PubMed ID: 36133571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing Driving Forces in Quantum Dot Supercrystal Assembly.
    Marino E; Kodger TE; Wegdam GH; Schall P
    Adv Mater; 2018 Oct; 30(43):e1803433. PubMed ID: 30133015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triplet transfer from PbS quantum dots to tetracene ligands: is faster always better?
    Gray V; Drake W; Allardice JR; Zhang Z; Xiao J; Congrave DG; Royakkers J; Zeng W; Dowland S; Greenham NC; Bronstein H; Anthony JE; Rao A
    J Mater Chem C Mater; 2022 Nov; 10(43):16321-16329. PubMed ID: 36562020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand-dependent exciton dynamics and photovoltaic properties of PbS quantum dot heterojunction solar cells.
    Chang J; Ogomi Y; Ding C; Zhang YH; Toyoda T; Hayase S; Katayama K; Shen Q
    Phys Chem Chem Phys; 2017 Mar; 19(9):6358-6367. PubMed ID: 27901148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic insight into the nucleation and growth of oleic acid capped lead sulphide quantum dots.
    Shrestha A; Spooner NA; Qiao SZ; Dai S
    Phys Chem Chem Phys; 2016 May; 18(20):14055-62. PubMed ID: 27156571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol and Halometallate, Mutually Passivated Quantum Dot Ink for Photovoltaic Application.
    Mandal D; Goswami PN; Rath AK
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26100-26108. PubMed ID: 31257850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of Interface Characteristics and Physisorption Mechanism in Quantum Dots/TiO
    Chon B; Lee HJ; Kang Y; Kim HW; Kim CH; Son HJ
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):9414-9427. PubMed ID: 38334708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of the Redox Activity of PbS Quantum Dots by Tuning Electrostatic Interactions at the Quantum Dot/Solvent Interface.
    He C; Weinberg DJ; Nepomnyashchii AB; Lian S; Weiss EA
    J Am Chem Soc; 2016 Jul; 138(28):8847-54. PubMed ID: 27341608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dithiocarbamates as capping ligands for water-soluble quantum dots.
    Zhang Y; Schnoes AM; Clapp AR
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3384-95. PubMed ID: 21053924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembly of Semiconductor Quantum Dots using Organic Templates.
    Yamauchi M; Masuo S
    Chemistry; 2020 Jun; 26(32):7176-7184. PubMed ID: 32101343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic Processes within Quantum Dot-Molecule Complexes.
    Harris RD; Bettis Homan S; Kodaimati M; He C; Nepomnyashchii AB; Swenson NK; Lian S; Calzada R; Weiss EA
    Chem Rev; 2016 Nov; 116(21):12865-12919. PubMed ID: 27499491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct vs Delayed Triplet Energy Transfer from Organic Semiconductors to Quantum Dots and Implications for Luminescent Harvesting of Triplet Excitons.
    Gray V; Allardice JR; Zhang Z; Dowland S; Xiao J; Petty AJ; Anthony JE; Greenham NC; Rao A
    ACS Nano; 2020 Apr; 14(4):4224-4234. PubMed ID: 32181633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Passivation and Carrier Collection in Ink-Processed PbS Quantum Dot Solar Cells via a Supplementary Ligand Strategy.
    Yang X; Yang J; Ullah MI; Xia Y; Liang G; Wang S; Zhang J; Hsu HY; Song H; Tang J
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42217-42225. PubMed ID: 32805951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.