BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 32766828)

  • 1. Mechanism of succinate efflux upon reperfusion of the ischaemic heart.
    Prag HA; Gruszczyk AV; Huang MM; Beach TE; Young T; Tronci L; Nikitopoulou E; Mulvey JF; Ascione R; Hadjihambi A; Shattock MJ; Pellerin L; Saeb-Parsy K; Frezza C; James AM; Krieg T; Murphy MP; Aksentijević D
    Cardiovasc Res; 2021 Mar; 117(4):1188-1201. PubMed ID: 32766828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.
    Chouchani ET; Pell VR; Gaude E; Aksentijević D; Sundier SY; Robb EL; Logan A; Nadtochiy SM; Ord ENJ; Smith AC; Eyassu F; Shirley R; Hu CH; Dare AJ; James AM; Rogatti S; Hartley RC; Eaton S; Costa ASH; Brookes PS; Davidson SM; Duchen MR; Saeb-Parsy K; Shattock MJ; Robinson AJ; Work LM; Frezza C; Krieg T; Murphy MP
    Nature; 2014 Nov; 515(7527):431-435. PubMed ID: 25383517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ischemic preconditioning protects against cardiac ischemia reperfusion injury without affecting succinate accumulation or oxidation.
    Pell VR; Spiroski AM; Mulvey J; Burger N; Costa ASH; Logan A; Gruszczyk AV; Rosa T; James AM; Frezza C; Murphy MP; Krieg T
    J Mol Cell Cardiol; 2018 Oct; 123():88-91. PubMed ID: 30118790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibiting Succinate Release Worsens Cardiac Reperfusion Injury by Enhancing Mitochondrial Reactive Oxygen Species Generation.
    Milliken AS; Nadtochiy SM; Brookes PS
    J Am Heart Assoc; 2022 Jul; 11(13):e026135. PubMed ID: 35766275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise.
    Reddy A; Bozi LHM; Yaghi OK; Mills EL; Xiao H; Nicholson HE; Paschini M; Paulo JA; Garrity R; Laznik-Bogoslavski D; Ferreira JCB; Carl CS; Sjøberg KA; Wojtaszewski JFP; Jeppesen JF; Kiens B; Gygi SP; Richter EA; Mathis D; Chouchani ET
    Cell; 2020 Oct; 183(1):62-75.e17. PubMed ID: 32946811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of myocardial ischaemia-reperfusion injury by inactivating oxidized phospholipids.
    Yeang C; Hasanally D; Que X; Hung MY; Stamenkovic A; Chan D; Chaudhary R; Margulets V; Edel AL; Hoshijima M; Gu Y; Bradford W; Dalton N; Miu P; Cheung DY; Jassal DS; Pierce GN; Peterson KL; Kirshenbaum LA; Witztum JL; Tsimikas S; Ravandi A
    Cardiovasc Res; 2019 Jan; 115(1):179-189. PubMed ID: 29850765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-ischaemic mitochondrial substrate constraint by inhibition of malate-aspartate shuttle preserves mitochondrial function after ischaemia-reperfusion.
    Jespersen NR; Yokota T; Støttrup NB; Bergdahl A; Paelestik KB; Povlsen JA; Dela F; Bøtker HE
    J Physiol; 2017 Jun; 595(12):3765-3780. PubMed ID: 28093764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ester Prodrugs of Malonate with Enhanced Intracellular Delivery Protect Against Cardiac Ischemia-Reperfusion Injury In Vivo.
    Prag HA; Pala L; Kula-Alwar D; Mulvey JF; Luping D; Beach TE; Booty LM; Hall AR; Logan A; Sauchanka V; Caldwell ST; Robb EL; James AM; Xu Z; Saeb-Parsy K; Hartley RC; Murphy MP; Krieg T
    Cardiovasc Drugs Ther; 2022 Feb; 36(1):1-13. PubMed ID: 32648168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TXNIP/Redd1 signalling and excessive autophagy: a novel mechanism of myocardial ischaemia/reperfusion injury in mice.
    Gao C; Wang R; Li B; Guo Y; Yin T; Xia Y; Zhang F; Lian K; Liu Y; Wang H; Zhang L; Gao E; Yan W; Tao L
    Cardiovasc Res; 2020 Mar; 116(3):645-657. PubMed ID: 31241142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β-arrestin 2 mediates cardiac ischemia-reperfusion injury via inhibiting GPCR-independent cell survival signalling.
    Wang Y; Jin L; Song Y; Zhang M; Shan D; Liu Y; Fang M; Lv F; Xiao RP; Zhang Y
    Cardiovasc Res; 2017 Nov; 113(13):1615-1626. PubMed ID: 29016703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MCT1 and MCT4 expression during myocardial ischemic-reperfusion injury in the isolated rat heart.
    Zhu Y; Wu J; Yuan SY
    Cell Physiol Biochem; 2013; 32(3):663-74. PubMed ID: 24030048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of the malate-aspartate shuttle by pre-ischaemic aminooxyacetate loading of the heart induces cardioprotection.
    Støttrup NB; Løfgren B; Birkler RD; Nielsen JM; Wang L; Caldarone CA; Kristiansen SB; Contractor H; Johannsen M; Bøtker HE; Nielsen TT
    Cardiovasc Res; 2010 Nov; 88(2):257-66. PubMed ID: 20562422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1.
    Li J; Yang YL; Li LZ; Zhang L; Liu Q; Liu K; Li P; Liu B; Qi LW
    Biochim Biophys Acta Mol Basis Dis; 2017 Nov; 1863(11):2835-2847. PubMed ID: 28736181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of succinate and ROS in reperfusion injury - A critical appraisal.
    Andrienko TN; Pasdois P; Pereira GC; Ovens MJ; Halestrap AP
    J Mol Cell Cardiol; 2017 Sep; 110():1-14. PubMed ID: 28689004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model of mitochondrial superoxide production during ischaemia-reperfusion injury for therapeutic development and mechanistic understanding.
    Sorby-Adams A; Prime TA; Miljkovic JL; Prag HA; Krieg T; Murphy MP
    Redox Biol; 2024 Jun; 72():103161. PubMed ID: 38677214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ru360, a specific mitochondrial calcium uptake inhibitor, improves cardiac post-ischaemic functional recovery in rats in vivo.
    García-Rivas Gde J; Carvajal K; Correa F; Zazueta C
    Br J Pharmacol; 2006 Dec; 149(7):829-37. PubMed ID: 17031386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HDAC inhibition induces autophagy and mitochondrial biogenesis to maintain mitochondrial homeostasis during cardiac ischemia/reperfusion injury.
    Yang J; He J; Ismail M; Tweeten S; Zeng F; Gao L; Ballinger S; Young M; Prabhu SD; Rowe GC; Zhang J; Zhou L; Xie M
    J Mol Cell Cardiol; 2019 May; 130():36-48. PubMed ID: 30880250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine 202 of cyclophilin D is a site of multiple post-translational modifications and plays a role in cardioprotection.
    Amanakis G; Sun J; Fergusson MM; McGinty S; Liu C; Molkentin JD; Murphy E
    Cardiovasc Res; 2021 Jan; 117(1):212-223. PubMed ID: 32129829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delayed ischaemic contracture onset by empagliflozin associates with NHE1 inhibition and is dependent on insulin in isolated mouse hearts.
    Uthman L; Nederlof R; Eerbeek O; Baartscheer A; Schumacher C; Buchholtz N; Hollmann MW; Coronel R; Weber NC; Zuurbier CJ
    Cardiovasc Res; 2019 Aug; 115(10):1533-1545. PubMed ID: 30649212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury.
    Boylston JA; Sun J; Chen Y; Gucek M; Sack MN; Murphy E
    J Mol Cell Cardiol; 2015 Nov; 88():73-81. PubMed ID: 26388266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.