These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32766844)

  • 1. Functional Morphology of Gliding Flight I: Modeling Reveals Distinct Performance Landscapes Based on Soaring Strategies.
    Waldrop LD; He Y; Hedrick TL; Rader JA
    Integr Comp Biol; 2020 Nov; 60(5):1283-1296. PubMed ID: 32766844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Morphology of Gliding Flight II. Morphology Follows Predictions of Gliding Performance.
    Rader JA; Hedrick TL; He Y; Waldrop LD
    Integr Comp Biol; 2020 Nov; 60(5):1297-1308. PubMed ID: 33184652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soaring and non-soaring bats of the family pteropodidae (flying foxes, Pteropus spp.): wing morphology and flight performance.
    Lindhe-Norberg UM; Brooke AP; Trewhella WJ
    J Exp Biol; 2000 Feb; 203(Pt 3):651-64. PubMed ID: 10637193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gliding flight in a jackdaw: a wind tunnel study.
    Rosén M; Hedenström A
    J Exp Biol; 2001 Mar; 204(Pt 6):1153-66. PubMed ID: 11222131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The gliding speed of migrating birds: slow and safe or fast and risky?
    Horvitz N; Sapir N; Liechti F; Avissar R; Mahrer I; Nathan R
    Ecol Lett; 2014 Jun; 17(6):670-9. PubMed ID: 24641086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.
    Klaassen van Oorschot B; Mistick EA; Tobalske BW
    J Exp Biol; 2016 Oct; 219(Pt 19):3146-3154. PubMed ID: 27473437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wing morphology, flight type and migration distance predict accumulated fuel load in birds.
    Vincze O; Vágási CI; Pap PL; Palmer C; Møller AP
    J Exp Biol; 2019 Jan; 222(Pt 1):. PubMed ID: 30446537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces.
    Lees JJ; Dimitriadis G; Nudds RL
    PeerJ; 2016; 4():e2495. PubMed ID: 27781155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flight modes in migrating European bee-eaters: heart rate may indicate low metabolic rate during soaring and gliding.
    Sapir N; Wikelski M; McCue MD; Pinshow B; Nathan R
    PLoS One; 2010 Nov; 5(11):e13956. PubMed ID: 21085655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wing morphing allows gulls to modulate static pitch stability during gliding.
    Harvey C; Baliga VB; Lavoie P; Altshuler DL
    J R Soc Interface; 2019 Jan; 16(150):20180641. PubMed ID: 30958156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raptor wing morphing with flight speed.
    Cheney JA; Stevenson JPJ; Durston NE; Maeda M; Song J; Megson-Smith DA; Windsor SP; Usherwood JR; Bomphrey RJ
    J R Soc Interface; 2021 Jul; 18(180):20210349. PubMed ID: 34255986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New model of flap-gliding flight.
    Sachs G
    J Theor Biol; 2015 Jul; 377():110-6. PubMed ID: 25841702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.
    Muijres FT; Johansson LC; Bowlin MS; Winter Y; Hedenström A
    PLoS One; 2012; 7(5):e37335. PubMed ID: 22624018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field estimates of body drag coefficient on the basis of dives in passerine birds.
    Hedenström A; Liechti F
    J Exp Biol; 2001 Mar; 204(Pt 6):1167-75. PubMed ID: 11222132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of posture during gliding flight in the flying lizard
    Buffa V; Salaün W; Cinnella P
    Bioinspir Biomim; 2024 Jan; 19(2):. PubMed ID: 38211353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined effects of body posture and three-dimensional wing shape enable efficient gliding in flying lizards.
    Khandelwal PC; Hedrick TL
    Sci Rep; 2022 Feb; 12(1):1793. PubMed ID: 35110615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An aeroelastic instability provides a possible basis for the transition from gliding to flapping flight.
    Curet OM; Swartz SM; Breuer KS
    J R Soc Interface; 2013 Mar; 10(80):20120940. PubMed ID: 23303221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerodynamic efficiency of gliding birds vs comparable UAVs: a review.
    Harvey C; Inman DJ
    Bioinspir Biomim; 2021 Apr; 16(3):. PubMed ID: 33157545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.