These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32767398)

  • 61. Characterization and Laser Structuring of Aqueous Processed Li(Ni
    Zhu P; Han J; Pfleging W
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361226
    [TBL] [Abstract][Full Text] [Related]  

  • 62. 2D honeycomb borophene oxide: a promising anode material offering super high capacity for Li/Na-ion batteries.
    Hu J; Zhong C; Wu W; Liu N; Liu Y; Yang SA; Ouyang C
    J Phys Condens Matter; 2020 Feb; 32(6):065001. PubMed ID: 31631885
    [TBL] [Abstract][Full Text] [Related]  

  • 63. High-Performance Sodium-Ion Batteries Enabled by 3D Nanoflowers Comprised of Ternary Sn-Based Dichalcogenides Embedded in Nitrogen and Sulfur Dual-Doped Carbon.
    Zheng Y; Wei S; Shang J; Wang D; Lei C; Zhao Y
    Small; 2023 Nov; 19(47):e2303746. PubMed ID: 37488690
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Synthesis of Sb-pyromellitic acid metal-organic framework material and its sodium storage properties.
    He Z; Zhang W; Li M
    RSC Adv; 2023 May; 13(24):16643-16650. PubMed ID: 37274412
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A Hierarchically Ordered Mesoporous-Carbon-Supported Iron Sulfide Anode for High-Rate Na-Ion Storage.
    Haridas AK; Angulakshmi N; Stephan AM; Lee Y; Ahn JH
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299625
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Enabling 100C Fast-Charging Bulk Bi Anodes for Na-Ion Batteries.
    Kim YH; An JH; Kim SY; Li X; Song EJ; Park JH; Chung KY; Choi YS; Scanlon DO; Ahn HJ; Lee JC
    Adv Mater; 2022 Jul; 34(27):e2201446. PubMed ID: 35524951
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Diffusion mechanism of Na ion-polaron complex in potential cathode materials NaVOPO
    Luong HD; Pham TD; Morikawa Y; Shibutani Y; Dinh VA
    Phys Chem Chem Phys; 2018 Sep; 20(36):23625-23634. PubMed ID: 30191242
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Improving Fast Charging-Discharging Performances of Ni-Rich LiNi
    Li T; Li D; Zhang Q; Gao J; Zhang L; Liu X
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009542
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Carbon- and Binder-Free NiCo2O4 Nanoneedle Array Electrode for Sodium-Ion Batteries: Electrochemical Performance and Insight into Sodium Storage Reaction.
    Lee JW; Shin HS; Lee CW; Jung KN
    Nanoscale Res Lett; 2016 Dec; 11(1):45. PubMed ID: 26831683
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Spectral Diffusion of Excitons in 3,4,9,10-Perylenetetracarboxylic-diimide (PTCDI) Thin Films.
    Yoshida T; Watanabe K
    J Phys Chem B; 2021 Aug; 125(32):9350-9356. PubMed ID: 34375107
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fabrication of porous Na
    Xu J; Gu E; Zhang Z; Xu Z; Xu Y; Du Y; Zhu X; Zhou X
    J Colloid Interface Sci; 2020 May; 567():84-91. PubMed ID: 32036117
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Highly Reversible and Superior Li-Storage Characteristics of Layered GeS
    Sung GK; Jeon KJ; Park CM
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29543-29550. PubMed ID: 27734665
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays.
    Chao D; Liang P; Chen Z; Bai L; Shen H; Liu X; Xia X; Zhao Y; Savilov SV; Lin J; Shen ZX
    ACS Nano; 2016 Nov; 10(11):10211-10219. PubMed ID: 27768284
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Three-Dimensional Arylene Diimide Frameworks for Highly Stable Lithium Ion Batteries.
    Schon TB; Tilley AJ; Kynaston EL; Seferos DS
    ACS Appl Mater Interfaces; 2017 May; 9(18):15631-15637. PubMed ID: 28430407
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A new sodiation-desodiation mechanism of the titania-based negative electrode for sodium-ion batteries.
    Ding C; Nohira T; Hagiwara R
    Phys Chem Chem Phys; 2016 Nov; 18(44):30770-30776. PubMed ID: 27796378
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Core-Shell Co
    Wang C; Wang Z; Zhao D; Ren J; Liu S; Tang H; Xu P; Gao F; Yue X; Yang H; Niu C; Chu W; Wang D; Liu X; Wang Z; Wu Y; Zhang Y
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55020-55028. PubMed ID: 34752063
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Polyanion-Type Electrode Materials for Sodium-Ion Batteries.
    Ni Q; Bai Y; Wu F; Wu C
    Adv Sci (Weinh); 2017 Mar; 4(3):1600275. PubMed ID: 28331782
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A V
    Dinda PP; Meena S
    J Phys Condens Matter; 2021 Apr; 33(17):. PubMed ID: 33530068
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Lithium-Rich Layered Oxide Li1.18 Ni0.15 Co0.15 Mn0.52 O2 as the Cathode Material for Hybrid Sodium-Ion Batteries.
    Wei Z; Gao Y; Wang L; Zhang C; Bian X; Fu Q; Wang C; Wei Y; Du F; Chen G
    Chemistry; 2016 Aug; 22(33):11610-6. PubMed ID: 27320123
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries.
    Xu Y; Zhang C; Zhou M; Fu Q; Zhao C; Wu M; Lei Y
    Nat Commun; 2018 Apr; 9(1):1720. PubMed ID: 29712922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.