These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32767489)

  • 1. Deep learning using a biophysical model for robust and accelerated reconstruction of quantitative, artifact-free and denoised
    Torop M; Kothapalli SVVN; Sun Y; Liu J; Kahali S; Yablonskiy DA; Kamilov US
    Magn Reson Med; 2020 Dec; 84(6):2932-2942. PubMed ID: 32767489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning-based motion artifact removal networks for quantitative
    Xu X; Kothapalli SVVN; Liu J; Kahali S; Gan W; Yablonskiy DA; Kamilov US
    Magn Reson Med; 2022 Jul; 88(1):106-119. PubMed ID: 35257400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based Accelerated and Noise-Suppressed Estimation (DANSE) of quantitative Gradient-Recalled Echo (qGRE) magnetic resonance imaging metrics associated with human brain neuronal structure and hemodynamic properties.
    Kahali S; Kothapalli SVVN; Xu X; Kamilov US; Yablonskiy DA
    NMR Biomed; 2023 May; 36(5):e4883. PubMed ID: 36442839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Library-driven approach for fast implementation of the voxel spread function to correct magnetic field inhomogeneity artifacts for gradient-echo sequences.
    Liu Y; Ye Q; Zeng F; Jiang X; Cai B; Lv W; Wen J
    Med Phys; 2021 Jul; 48(7):3714-3720. PubMed ID: 33914914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust water-fat separation for multi-echo gradient-recalled echo sequence using convolutional neural network.
    Cho J; Park H
    Magn Reson Med; 2019 Jul; 82(1):476-484. PubMed ID: 30790344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients.
    Kwon K; Kim D; Kim B; Park H
    Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust water-fat separation based on deep learning model exploring multi-echo nature of mGRE.
    Liu K; Li X; Li Z; Chen Y; Xiong H; Chen F; Bao Q; Liu C
    Magn Reson Med; 2021 May; 85(5):2828-2841. PubMed ID: 33231896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI.
    Tian Q; Li Z; Fan Q; Polimeni JR; Bilgic B; Salat DH; Huang SY
    Neuroimage; 2022 Jun; 253():119033. PubMed ID: 35240299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic resonance parameter mapping using model-guided self-supervised deep learning.
    Liu F; Kijowski R; El Fakhri G; Feng L
    Magn Reson Med; 2021 Jun; 85(6):3211-3226. PubMed ID: 33464652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Native-resolution myocardial principal Eulerian strain mapping using convolutional neural networks and Tagged Magnetic Resonance Imaging.
    Yassine IA; Ghanem AM; Metwalli NS; Hamimi A; Ouwerkerk R; Matta JR; Solomon MA; Elinoff JM; Gharib AM; Abd-Elmoniem KZ
    Comput Biol Med; 2022 Feb; 141():105041. PubMed ID: 34836627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping.
    Liu F; Feng L; Kijowski R
    Magn Reson Med; 2019 Jul; 82(1):174-188. PubMed ID: 30860285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal artifact reduction for practical dental computed tomography by improving interpolation-based reconstruction with deep learning.
    Liang K; Zhang L; Yang H; Yang Y; Chen Z; Xing Y
    Med Phys; 2019 Dec; 46(12):e823-e834. PubMed ID: 31811792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepResp: Deep learning solution for respiration-induced B
    An H; Shin HG; Ji S; Jung W; Oh S; Shin D; Park J; Lee J
    Neuroimage; 2021 Jan; 224():117432. PubMed ID: 33038539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved magnetic resonance myelin water imaging using multi-channel denoising convolutional neural networks (MCDnCNN).
    Xu G; He Y; Yu Q; He H; Zhao Z; Fan M; Li J; Xu D
    Quant Imaging Med Surg; 2022 Mar; 12(3):1716-1737. PubMed ID: 35284287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An unsupervised deep learning technique for susceptibility artifact correction in reversed phase-encoding EPI images.
    Duong STM; Phung SL; Bouzerdoum A; Schira MM
    Magn Reson Imaging; 2020 Sep; 71():1-10. PubMed ID: 32407764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. k-Space deep learning for reference-free EPI ghost correction.
    Lee J; Han Y; Ryu JK; Park JY; Ye JC
    Magn Reson Med; 2019 Dec; 82(6):2299-2313. PubMed ID: 31321809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep convolution neural networks based artifact suppression in under-sampled radial acquisitions of myocardial T
    Nezafat M; El-Rewaidy H; Kucukseymen S; Hauser TH; Fahmy AS
    Phys Med Biol; 2020 Nov; 65(22):225024. PubMed ID: 33045693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A multi-channel input convolutional neural network for artifact reduction in quantitative susceptibility mapping].
    Si W; Feng Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2022 Dec; 42(12):1799-1806. PubMed ID: 36651247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined Denoising and Suppression of Transient Artifacts in Arterial Spin Labeling MRI Using Deep Learning.
    Hales PW; Pfeuffer J; A Clark C
    J Magn Reson Imaging; 2020 Nov; 52(5):1413-1426. PubMed ID: 32542779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving quantitative MRI using self-supervised deep learning with model reinforcement: Demonstration for rapid T1 mapping.
    Bian W; Jang A; Liu F
    Magn Reson Med; 2024 Jul; 92(1):98-111. PubMed ID: 38342980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.