These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32767526)

  • 1. Metal-Sulfur Linkages Achieved by Organic Tethering of Ruthenium Nanocrystals for Enhanced Electrochemical Nitrogen Reduction.
    Ahmed MI; Liu C; Zhao Y; Ren W; Chen X; Chen S; Zhao C
    Angew Chem Int Ed Engl; 2020 Nov; 59(48):21465-21469. PubMed ID: 32767526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating wettability of catalytic surface for improving ammonia production from electrochemical nitrogen reduction.
    Kim D; Alam K; Han MK; Surendran S; Lim J; Young Kim J; Jun Moon D; Jeong G; Gon Kim M; Kwon G; Yang S; Gon Kang T; Kyu Kim J; Yeop Jung S; Cho H; Sim U
    J Colloid Interface Sci; 2023 Mar; 633():53-59. PubMed ID: 36434935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Pot Synthesis of Ruthenium-Based Nanocatalyst Using Reduced Graphene Oxide as Matrix for Electrochemical Synthesis of Ammonia.
    Sun W; Sahin NE; Sun D; Wu X; Munoz C; Thakare J; Aulich T; Zhang J; Hou X; Oncel N; Pierce D; Zhao JX
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1115-1128. PubMed ID: 36575897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ZnO Quantum Dots Coupled with Graphene toward Electrocatalytic N
    Liu YP; Li YB; Huang DJ; Zhang H; Chu K
    Chemistry; 2019 Sep; 25(51):11933-11939. PubMed ID: 31310395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient electrochemical N
    Fang B; Wang H; Zhao M; Xu J; Wang X; Song S; Zhang H
    Dalton Trans; 2022 Oct; 51(39):15089-15093. PubMed ID: 36124864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introducing oxygen vacancies in a bi-metal oxide nanosphere for promoting electrocatalytic nitrogen reduction.
    Li H; Xu X; Lin X; Chen J; Zhu K; Peng F; Gao F
    Nanoscale; 2023 Feb; 15(8):4071-4079. PubMed ID: 36734374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced electrocatalytic N
    Xu T; Ma D; Li T; Yue L; Luo Y; Lu S; Shi X; Asiri AM; Yang C; Sun X
    Chem Commun (Camb); 2020 Nov; 56(90):14031-14034. PubMed ID: 33099589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cr
    Xia L; Li B; Zhang Y; Zhang R; Ji L; Chen H; Cui G; Zheng H; Sun X; Xie F; Liu Q
    Inorg Chem; 2019 Feb; 58(4):2257-2260. PubMed ID: 30688065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronically Coupled SnO
    Chu K; Liu YP; Li YB; Wang J; Zhang H
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31806-31815. PubMed ID: 31424200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen vacancies-rich Cu-W
    Hu L; Liu K; Guo Y; Feng J; Ding X; Li W; Su X; Gao M; Li Z; Zhang H; Ren Y; Wei T
    J Colloid Interface Sci; 2023 Aug; 644():285-294. PubMed ID: 37120877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting electrocatalytic reduction of nitrogen to ammonia under ambient conditions by alloy engineering.
    Jin Y; Ding X; Zhang L; Cong M; Xu F; Wei Y; Hao S; Gao Y
    Chem Commun (Camb); 2020 Sep; 56(77):11477-11480. PubMed ID: 32856638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategic Structure Tuning of Yolk-Shell Microcages for Efficient Nitrogen Fixation.
    Guo H; Li W; Chen K; Yue M; Huang Y; Liu Y; Shao H; Chen C; Wang C; Wang Y
    ChemSusChem; 2021 Jun; 14(12):2521-2528. PubMed ID: 33830646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MoP supported on reduced graphene oxide for high performance electrochemical nitrogen reduction.
    Zhou Y; Yu X; Sun F; Zhang J
    Dalton Trans; 2020 Jan; 49(4):988-992. PubMed ID: 31912814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical nitrogen fixation via bimetallic Sn-Ti sites on defective titanium oxide catalysts.
    Cao N; Wei Z; Xu J; Luo J; Guan A; Al-Enizi AM; Ma J; Zheng G
    J Colloid Interface Sci; 2021 Apr; 588():242-247. PubMed ID: 33388584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Selective Electrochemical Reduction of Dinitrogen to Ammonia at Ambient Temperature and Pressure over Iron Oxide Catalysts.
    Cui X; Tang C; Liu XM; Wang C; Ma W; Zhang Q
    Chemistry; 2018 Dec; 24(69):18494-18501. PubMed ID: 29907981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unusual electrochemical N
    Zhu X; Wu T; Ji L; Liu Q; Luo Y; Cui G; Xiang Y; Zhang Y; Zheng B; Sun X
    Chem Commun (Camb); 2020 Jan; 56(5):731-734. PubMed ID: 31840689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Electrocatalyst for Electrochemical Reduction of N
    Xian H; Guo H; Chen Z; Yu G; Alshehri AA; Alzahrani KA; Hao F; Song R; Li T
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2445-2451. PubMed ID: 31852178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connection of Ru nanoparticles with rich defects enables the enhanced electrochemical reduction of nitrogen.
    Tang X; Tian X; Zhou L; Yang F; He R; Zhao X; Zhu W
    Phys Chem Chem Phys; 2022 May; 24(19):11491-11495. PubMed ID: 35531769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A spinel ferrite catalyst for efficient electroreduction of dinitrogen to ammonia.
    Tian Y; Shao X; Zhu M; Liu W; Wei Z; Chu K
    Dalton Trans; 2020 Sep; 49(36):12559-12564. PubMed ID: 32926054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfur dots-graphene nanohybrid: a metal-free electrocatalyst for efficient N
    Chen H; Zhu X; Huang H; Wang H; Wang T; Zhao R; Zheng H; Asiri AM; Luo Y; Sun X
    Chem Commun (Camb); 2019 Mar; 55(21):3152-3155. PubMed ID: 30801101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.