These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32767556)

  • 1. Rumen bacteria and meat fatty acid composition of Sunit sheep reared under different feeding regimens in China.
    Wang B; Luo Y; Wang Y; Wang D; Hou Y; Yao D; Tian J; Jin Y
    J Sci Food Agric; 2021 Feb; 101(3):1100-1110. PubMed ID: 32767556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ruminal cellulolytic bacteria abundance leads to the variation in fatty acids in the rumen digesta and meat of fattening lambs.
    Zhang Z; Niu X; Li F; Li F; Guo L
    J Anim Sci; 2020 Jul; 98(7):. PubMed ID: 32687154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Untargeted and Targeted Metabolomics Profiling of Muscle Reveals Enhanced Meat Quality in Artificial Pasture Grazing Tan Lambs via Rescheduling the Rumen Bacterial Community.
    Wang B; Wang Y; Zuo S; Peng S; Wang Z; Zhang Y; Luo H
    J Agric Food Chem; 2021 Jan; 69(2):846-858. PubMed ID: 33405917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of diets with various levels of forage rape (Brassica napus) on growth performance, carcass traits, meat quality and rumen microbiota of Hu lambs.
    Du E; Guo W; Zhao N; Chen F; Fan Q; Zhang W; Huang S; Zhou G; Fu T; Wei J
    J Sci Food Agric; 2022 Feb; 102(3):1281-1291. PubMed ID: 34363700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Feeding Pomegranate Byproduct on Fatty Acid Composition of Ruminal Digesta, Liver, and Muscle in Lambs.
    Natalello A; Luciano G; Morbidini L; Valenti B; Pauselli M; Frutos P; Biondi L; Rufino-Moya PJ; Lanza M; Priolo A
    J Agric Food Chem; 2019 Apr; 67(16):4472-4482. PubMed ID: 30929432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of sheep rumen fermentation and microbial communities to feed infected with the endophyte Epichloë gansuensis as evaluated with rumen-simulating technology.
    Ma Y; Wang H; Li C
    J Microbiol; 2021 Aug; 59(8):718-728. PubMed ID: 34302620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary Alfalfa and Calcium Salts of Long-Chain Fatty Acids Alter Protein Utilization, Microbial Populations, and Plasma Fatty Acid Profile in Holstein Freemartin Heifers.
    He Y; Qiu Q; Shao T; Niu W; Xia C; Wang H; Li Q; Gao Z; Yu Z; Su H; Cao B
    J Agric Food Chem; 2017 Dec; 65(50):10859-10867. PubMed ID: 29179547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial communities related to 3-nitro-1-propionic acid degradation in the rumen of grazing ruminants in the Qinghai-Tibetan Plateau.
    Guo W; Bi S; Kang J; Zhang Y; Long R; Huang X; Shan MN; Anderson RC
    Anaerobe; 2018 Dec; 54():42-54. PubMed ID: 30081086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rumen bacterial diversity of Tibetan sheep (
    Cui X; Wang Z; Yan T; Chang S; Wang H; Hou F
    Can J Microbiol; 2019 Dec; 65(12):859-869. PubMed ID: 31386822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibrolytic rumen bacteria of camel and sheep and their applications in the bioconversion of barley straw to soluble sugars for biofuel production.
    Rabee AE; Sayed Alahl AA; Lamara M; Ishaq SL
    PLoS One; 2022; 17(1):e0262304. PubMed ID: 34995335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of increasing amounts of olive crude phenolic concentrate in the diet of dairy ewes on rumen liquor and milk fatty acid composition.
    Cappucci A; Alves SP; Bessa RJB; Buccioni A; Mannelli F; Pauselli M; Viti C; Pastorelli R; Roscini V; Serra A; Conte G; Mele M
    J Dairy Sci; 2018 Jun; 101(6):4992-5005. PubMed ID: 29525320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of donor animal species and their feeding on the composition of the microbial community establishing in a rumen simulation.
    Witzig M; Boguhn J; Zeder M; Seifert J; Rodehutscord M
    J Appl Microbiol; 2015 Jul; 119(1):33-46. PubMed ID: 25879255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Condensed and Hydrolyzable Tannins on Rumen Metabolism with Emphasis on the Biohydrogenation of Unsaturated Fatty Acids.
    Costa M; Alves SP; Cappucci A; Cook SR; Duarte A; Caldeira RM; McAllister TA; Bessa RJB
    J Agric Food Chem; 2018 Apr; 66(13):3367-3377. PubMed ID: 29494146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative analysis of carcass and meat traits, and rumen bacteria between Chinese Mongolian sheep and Dorper × Chinese Mongolian crossbred sheep.
    Xiang J; Zhong L; Luo H; Meng L; Dong Y; Qi Z; Wang H
    Animal; 2022 Apr; 16(4):100503. PubMed ID: 35378496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beneficial changes in rumen bacterial community profile in sheep and dairy calves as a result of feeding the probiotic Bacillus amyloliquefaciens H57.
    Schofield BJ; Lachner N; Le OT; McNeill DM; Dart P; Ouwerkerk D; Hugenholtz P; Klieve AV
    J Appl Microbiol; 2018 Mar; 124(3):855-866. PubMed ID: 29314469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of feeding regimens on the composition of gut microbiota and metabolite profiles of plasma and feces from Mongolian sheep.
    Wang B; Luo Y; Su R; Yao D; Hou Y; Liu C; Du R; Jin Y
    J Microbiol; 2020 Jun; 58(6):472-482. PubMed ID: 32323198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary n-6:n-3 Fatty Acid Ratios Alter Rumen Fermentation Parameters and Microbial Populations in Goats.
    Ebrahimi M; Rajion MA; Adeyemi KD; Jafari S; Jahromi MF; Oskoueian E; Meng GY; Ghaffari MH
    J Agric Food Chem; 2017 Feb; 65(4):737-744. PubMed ID: 28052203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of dietary energy levels on rumen bacterial community composition in Holstein heifers under the same forage to concentrate ratio condition.
    Bi Y; Zeng S; Zhang R; Diao Q; Tu Y
    BMC Microbiol; 2018 Jul; 18(1):69. PubMed ID: 29996759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of flaxseed to reduce biohydrogenation of α-linolenic acid by ruminal microbes in sheep and cattle, and increase n-3 fatty acid concentrations in red meat.
    Kronberg SL; Scholljegerdes EJ; Murphy EJ; Ward RE; Maddock TD; Schauer CS
    J Anim Sci; 2012 Dec; 90(12):4618-24. PubMed ID: 22696616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield.
    Bayat AR; Tapio I; Vilkki J; Shingfield KJ; Leskinen H
    J Dairy Sci; 2018 Feb; 101(2):1136-1151. PubMed ID: 29224879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.