BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32767816)

  • 21. Dual-specificity protein phosphatase DUSP4 regulates response to MEK inhibition in BRAF wild-type melanoma.
    Gupta A; Towers C; Willenbrock F; Brant R; Hodgson DR; Sharpe A; Smith P; Cutts A; Schuh A; Asher R; Myers K; Love S; Collins L; Wise A; Middleton MR; Macaulay VM
    Br J Cancer; 2020 Feb; 122(4):506-516. PubMed ID: 31839677
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ERBB activation modulates sensitivity to MEK1/2 inhibition in a subset of driver-negative melanoma.
    Hutchinson KE; Johnson DB; Johnson AS; Sanchez V; Kuba M; Lu P; Chen X; Kelley MC; Wang Q; Zhao Z; Kris M; Berger MF; Sosman JA; Pao W
    Oncotarget; 2015 Sep; 6(26):22348-60. PubMed ID: 26084293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptional regulation of human DUSP4 gene by cancer-related transcription factors.
    Varela T; Conceição N; Laizé V; Cancela ML
    J Cell Biochem; 2021 Oct; 122(10):1556-1566. PubMed ID: 34254709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of angiopoietin-1/Tie-2 receptor signaling in endothelial cells by dual-specificity phosphatases 1, 4, and 5.
    Echavarria R; Hussain SN
    J Am Heart Assoc; 2013 Dec; 2(6):e000571. PubMed ID: 24308939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ARID1A loss activates MAPK signaling via DUSP4 downregulation.
    Mandal J; Yu ZC; Shih IM; Wang TL
    J Biomed Sci; 2023 Dec; 30(1):94. PubMed ID: 38071325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Partial gene suppression improves identification of cancer vulnerabilities when CRISPR-Cas9 knockout is pan-lethal.
    Krill-Burger JM; Dempster JM; Borah AA; Paolella BR; Root DE; Golub TR; Boehm JS; Hahn WC; McFarland JM; Vazquez F; Tsherniak A
    Genome Biol; 2023 Aug; 24(1):192. PubMed ID: 37612728
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polycyclic aromatic hydrocarbon (PAH)-mediated upregulation of hepatic microRNA-181 family promotes cancer cell migration by targeting MAPK phosphatase-5, regulating the activation of p38 MAPK.
    Song MK; Park YK; Ryu JC
    Toxicol Appl Pharmacol; 2013 Nov; 273(1):130-9. PubMed ID: 23993976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. p38 MAPK activation through B7-H3-mediated DUSP10 repression promotes chemoresistance.
    Flem-Karlsen K; Tekle C; Øyjord T; Flørenes VA; Mælandsmo GM; Fodstad Ø; Nunes-Xavier CE
    Sci Rep; 2019 Apr; 9(1):5839. PubMed ID: 30967582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Knockout of
    Malek N; Mrówczyńska E; Michrowska A; Mazurkiewicz E; Pavlyk I; Mazur AJ
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deregulation of DUSP activity in EGFR-mutant lung cancer cell lines contributes to sustained ERK1/2 signaling.
    Britson JS; Barton F; Balko JM; Black EP
    Biochem Biophys Res Commun; 2009 Dec; 390(3):849-54. PubMed ID: 19836351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of G9a induces DUSP4-dependent autophagic cell death in head and neck squamous cell carcinoma.
    Li KC; Hua KT; Lin YS; Su CY; Ko JY; Hsiao M; Kuo ML; Tan CT
    Mol Cancer; 2014 Jul; 13():172. PubMed ID: 25027955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parallel CRISPR-Cas9 screens clarify impacts of p53 on screen performance.
    Bowden AR; Morales-Juarez DA; Sczaniecka-Clift M; Agudo MM; Lukashchuk N; Thomas JC; Jackson SP
    Elife; 2020 May; 9():. PubMed ID: 32441252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generation of Functional Gene Knockout Melanoma Cell Lines by CRISPR-Cas9 Gene Editing.
    Hargadon KM; Bushhouse DZ; Johnson CE; Williams CJ
    Methods Mol Biol; 2021; 2265():25-46. PubMed ID: 33704703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined Dusp4 and p53 loss with Dbf4 amplification drives tumorigenesis via cell cycle restriction and replication stress escape in breast cancer.
    Hanna A; Nixon MJ; Estrada MV; Sanchez V; Sheng Q; Opalenik SR; Toren AL; Bauer J; Owens P; Mason FM; Cook RS; Sanders ME; Arteaga CL; Balko JM
    Breast Cancer Res; 2022 Jul; 24(1):51. PubMed ID: 35850776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of pathways modulating vemurafenib resistance in melanoma cells via a genome-wide CRISPR/Cas9 screen.
    Goh CJH; Wong JH; El Farran C; Tan BX; Coffill CR; Loh YH; Lane D; Arumugam P
    G3 (Bethesda); 2021 Feb; 11(2):. PubMed ID: 33604667
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DUSP26 negatively affects the proliferation of epithelial cells, an effect not mediated by dephosphorylation of MAPKs.
    Patterson KI; Brummer T; Daly RJ; O'Brien PM
    Biochim Biophys Acta; 2010 Sep; 1803(9):1003-12. PubMed ID: 20347885
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A genome-wide CRISPR screen identifies FBXO42 involvement in resistance toward MEK inhibition in NRAS-mutant melanoma.
    Nagler A; Vredevoogd DW; Alon M; Cheng PF; Trabish S; Kalaora S; Arafeh R; Goldin V; Levesque MP; Peeper DS; Samuels Y
    Pigment Cell Melanoma Res; 2020 Mar; 33(2):334-344. PubMed ID: 31549767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oncogenic KRAS and BRAF activation of the MEK/ERK signaling pathway promotes expression of dual-specificity phosphatase 4 (DUSP4/MKP2) resulting in nuclear ERK1/2 inhibition.
    Cagnol S; Rivard N
    Oncogene; 2013 Jan; 32(5):564-76. PubMed ID: 22430215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genomic Loss of DUSP4 Contributes to the Progression of Intraepithelial Neoplasm of Pancreas to Invasive Carcinoma.
    Hijiya N; Tsukamoto Y; Nakada C; Tung Nguyen L; Kai T; Matsuura K; Shibata K; Inomata M; Uchida T; Tokunaga A; Amada K; Shirao K; Yamada Y; Mori H; Takeuchi I; Seto M; Aoki M; Takekawa M; Moriyama M
    Cancer Res; 2016 May; 76(9):2612-25. PubMed ID: 26941286
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epigenetic downregulation of mitogen-activated protein kinase phosphatase MKP-2 relieves its growth suppressive activity in glioma cells.
    Waha A; Felsberg J; Hartmann W; von dem Knesebeck A; Mikeska T; Joos S; Wolter M; Koch A; Yan PS; Endl E; Wiestler OD; Reifenberger G; Pietsch T; Waha A
    Cancer Res; 2010 Feb; 70(4):1689-99. PubMed ID: 20124482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.