These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 32767957)
61. Design and Synthesis of 1,2-Bis(hydroxymethyl)pyrrolo[2,1- a]phthalazine Hybrids as Potent Anticancer Agents that Inhibit Angiogenesis and Induce DNA Interstrand Cross-links. Chang SM; Jain V; Chen TL; Patel AS; Pidugu HB; Lin YW; Wu MH; Huang JR; Wu HC; Shah A; Su TL; Lee TC J Med Chem; 2019 Mar; 62(5):2404-2418. PubMed ID: 30776229 [TBL] [Abstract][Full Text] [Related]
62. Some pyrrole substituted aryl pyridazinone and phthalazinone derivatives and their antihypertensive activities. Demirayak S; Karaburun AC; Beis R Eur J Med Chem; 2004 Dec; 39(12):1089-95. PubMed ID: 15571871 [TBL] [Abstract][Full Text] [Related]
63. Vasorelaxant activity of phthalazinones and related compounds. del Olmo E; Barboza B; Ybarra MI; López-Pérez JL; Carrón R; Sevilla MA; Boselli C; San Feliciano A Bioorg Med Chem Lett; 2006 May; 16(10):2786-90. PubMed ID: 16513345 [TBL] [Abstract][Full Text] [Related]
64. Discovery, mechanism and metabolism studies of 2,3-difluorophenyl-linker-containing PARP1 inhibitors with enhanced in vivo efficacy for cancer therapy. Chen W; Guo N; Qi M; Dai H; Hong M; Guan L; Huan X; Song S; He J; Wang Y; Xi Y; Yang X; Shen Y; Su Y; Sun Y; Gao Y; Chen Y; Ding J; Tang Y; Ren G; Miao Z; Li J Eur J Med Chem; 2017 Sep; 138():514-531. PubMed ID: 28692916 [TBL] [Abstract][Full Text] [Related]
65. Design, synthesis and biological evaluation of novel 6,7-disubstituted-4-phenoxyquinoline derivatives bearing 4-oxo-3,4-dihydrophthalazine-1-carboxamide moieties as c-Met kinase inhibitors. Liu Z; Wang R; Guo R; Hu J; Li R; Zhao Y; Gong P Bioorg Med Chem; 2014 Jul; 22(14):3642-53. PubMed ID: 24882675 [TBL] [Abstract][Full Text] [Related]
66. 3-[(6-Arylamino)pyridazinylamino]benzoic acids: design, synthesis and in vitro evaluation of anticancer activity. Abouzid KA; Khalil NA; Ahmed EM; Mohamed KO Arch Pharm Res; 2013 Jan; 36(1):41-50. PubMed ID: 23307426 [TBL] [Abstract][Full Text] [Related]
67. Design, synthesis and evaluation of dual pharmacology β2-adrenoceptor agonists and PDE4 inhibitors. Huang L; Shan W; Zhou Q; Xie J; Lai K; Li X Bioorg Med Chem Lett; 2014 Jan; 24(1):249-53. PubMed ID: 24300734 [TBL] [Abstract][Full Text] [Related]
68. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Soltan OM; Shoman ME; Abdel-Aziz SA; Narumi A; Konno H; Abdel-Aziz M Eur J Med Chem; 2021 Dec; 225():113768. PubMed ID: 34450497 [TBL] [Abstract][Full Text] [Related]
69. Is there a future for Aurora kinase inhibitors for anticancer therapy? Carpinelli P; Moll J Curr Opin Drug Discov Devel; 2009 Jul; 12(4):533-42. PubMed ID: 19562649 [TBL] [Abstract][Full Text] [Related]
70. Synthesis and anticancer activity evaluation of 2(4-alkoxyphenyl)cyclopropyl hydrazides and triazolo phthalazines. De P; Baltas M; Lamoral-Theys D; Bruyère C; Kiss R; Bedos-Belval F; Saffon N Bioorg Med Chem; 2010 Apr; 18(7):2537-48. PubMed ID: 20303278 [TBL] [Abstract][Full Text] [Related]
71. PARP inhibitors as antitumor agents: a patent update (2013-2015). Yuan Z; Chen J; Li W; Li D; Chen C; Gao C; Jiang Y Expert Opin Ther Pat; 2017 Mar; 27(3):363-382. PubMed ID: 27841036 [TBL] [Abstract][Full Text] [Related]
72. Anthraquinone: a promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Siddamurthi S; Gutti G; Jana S; Kumar A; Singh SK Future Med Chem; 2020 Jun; 12(11):1037-1069. PubMed ID: 32349522 [TBL] [Abstract][Full Text] [Related]
73. Novel selective phosphodiesterase (PDE4) inhibitors. 4. Resolution, absolute configuration, and PDE4 inhibitory activity of cis-tetra- and cis-hexahydrophthalazinones. Van der Mey M; Boss H; Couwenberg D; Hatzelmann A; Sterk GJ; Goubitz K; Schenk H; Timmerman H J Med Chem; 2002 Jun; 45(12):2526-33. PubMed ID: 12036361 [TBL] [Abstract][Full Text] [Related]
75. Synthesis, Biological Evaluation and Molecular Docking Study of Cyclic Diarylheptanoids as Potential Anticancer Therapeutics. Lu Y; Yin W; Alam MS; Kadi AA; Jahng Y; Kwon Y; Rahman AFMM Anticancer Agents Med Chem; 2020; 20(4):464-475. PubMed ID: 31763968 [TBL] [Abstract][Full Text] [Related]
76. Synthesis and biological activity of aminophthalazines and aminopyridazines as novel inhibitors of PGE2 production in cells. Medda F; Sells E; Chang HH; Dietrich J; Chappeta S; Smith B; Gokhale V; Meuillet EJ; Hulme C Bioorg Med Chem Lett; 2013 Jan; 23(2):528-31. PubMed ID: 23237838 [TBL] [Abstract][Full Text] [Related]
77. Benzimidazole Scaffold as Anticancer Agent: Synthetic Approaches and Structure-Activity Relationship. Shrivastava N; Naim MJ; Alam MJ; Nawaz F; Ahmed S; Alam O Arch Pharm (Weinheim); 2017 Jun; 350(6):. PubMed ID: 28544162 [TBL] [Abstract][Full Text] [Related]
78. Studies on antiatherosclerotic agents. Synthesis of 7-ethoxycarbonyl-4-formyl-6,8-dimethyl-1(2H)-phthalazinone derivatives and related compounds. Eguchi Y; Sasaki F; Takashima Y; Nakajima M; Ishikawa M Chem Pharm Bull (Tokyo); 1991 Mar; 39(3):795-7. PubMed ID: 2070467 [TBL] [Abstract][Full Text] [Related]
79. Synthesis of 1-/2-substituted-[1,2,3]triazolo[4,5-g]phthalazine-4,9-diones and evaluation of their cytotoxicity and topoisomerase II inhibition. Kim JS; Rhee HK; Park HJ; Lee SK; Lee CO; Park Choo HY Bioorg Med Chem; 2008 Apr; 16(8):4545-50. PubMed ID: 18321715 [TBL] [Abstract][Full Text] [Related]