These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32768279)

  • 1. Impact of external resistance acclimation on charge transfer and diffusion resistance in bench-scale microbial fuel cells.
    Rossi R; Logan BE
    Bioresour Technol; 2020 Dec; 318():123921. PubMed ID: 32768279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. External resistance acclimation regulates bio-anode: new perspective from biofilm structure and its correlation with anode performance.
    Yang J; Cheng S
    Bioprocess Biosyst Eng; 2022 Feb; 45(2):269-277. PubMed ID: 34689231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of anode and anolyte community growth and the impact of impedance in a microbial fuel cell.
    Sanchez-Herrera D; Pacheco-Catalan D; Valdez-Ojeda R; Canto-Canche B; Dominguez-Benetton X; Domínguez-Maldonado J; Alzate-Gaviria L
    BMC Biotechnol; 2014 Dec; 14():102. PubMed ID: 25487741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy.
    Borole AP; Aaron D; Hamilton CY; Tsouris C
    Environ Sci Technol; 2010 Apr; 44(7):2740-5. PubMed ID: 20222678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial communities adapted to higher external resistance can reduce the onset potential of anode in microbial fuel cells.
    Suzuki K; Kato Y; Yui A; Yamamoto S; Ando S; Rubaba O; Tashiro Y; Futamata H
    J Biosci Bioeng; 2018 May; 125(5):565-571. PubMed ID: 29373307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Electrode and Solution Area-Based Resistances Enables Quantitative Comparisons of Factors Impacting Microbial Fuel Cell Performance.
    Rossi R; Cario BP; Santoro C; Yang W; Saikaly PE; Logan BE
    Environ Sci Technol; 2019 Apr; 53(7):3977-3986. PubMed ID: 30810037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive impedance journey to continuous microbial fuel cells.
    Sevda S; Chayambuka K; Sreekrishnan TR; Pant D; Dominguez-Benetton X
    Bioelectrochemistry; 2015 Dec; 106(Pt A):159-66. PubMed ID: 25921205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the specific role of external load on the performance versus stability trade-off in microbial fuel cells.
    Koók L; Nemestóthy N; Bélafi-Bakó K; Bakonyi P
    Bioresour Technol; 2020 Aug; 309():123313. PubMed ID: 32289659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Fe, Ni, and Fe/Ni metallic nanoparticles on power production and biosurfactant production from used vegetable oil in the anode chamber of a microbial fuel cell.
    Liu J; Vipulanandan C
    Waste Manag; 2017 Aug; 66():169-177. PubMed ID: 28404510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impedance spectroscopy as a tool for non-intrusive detection of extracellular mediators in microbial fuel cells.
    Ramasamy RP; Gadhamshetty V; Nadeau LJ; Johnson GR
    Biotechnol Bioeng; 2009 Dec; 104(5):882-91. PubMed ID: 19585525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns.
    Yang J; Cheng S; Sun Y; Li C
    Biotechnol Lett; 2017 Oct; 39(10):1515-1520. PubMed ID: 28664313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of bio-anode performance through electrochemical impedance spectroscopy.
    ter Heijne A; Schaetzle O; Gimenez S; Navarro L; Hamelers B; Fabregat-Santiago F
    Bioelectrochemistry; 2015 Dec; 106(Pt A):64-72. PubMed ID: 25869113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of constant or dynamic low anode potentials on microbial community development in bioelectrochemical systems.
    Yan H; Yates MD; Regan JM
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):9319-29. PubMed ID: 26286510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased performance of a tubular microbial fuel cell with a rotating carbon-brush anode.
    Liao Q; Zhang J; Li J; Ye D; Zhu X; Zhang B
    Biosens Bioelectron; 2015 Jan; 63():558-561. PubMed ID: 25168763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell.
    Manohar AK; Bretschger O; Nealson KH; Mansfeld F
    Bioelectrochemistry; 2008 Apr; 72(2):149-54. PubMed ID: 18294928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes.
    Aelterman P; Versichele M; Marzorati M; Boon N; Verstraete W
    Bioresour Technol; 2008 Dec; 99(18):8895-902. PubMed ID: 18524577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of electron transfer rates to a solid phase electron acceptor through the stages of biofilm formation from single cells to multicellular communities.
    McLean JS; Wanger G; Gorby YA; Wainstein M; McQuaid J; Ishii SI; Bretschger O; Beyenal H; Nealson KH
    Environ Sci Technol; 2010 Apr; 44(7):2721-7. PubMed ID: 20199066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitinol as a suitable anode material for electricity generation in microbial fuel cells.
    Taşkan E; Bulak S; Taşkan B; Şaşmaz M; El Abed S; El Abed A
    Bioelectrochemistry; 2019 Aug; 128():118-125. PubMed ID: 30978518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.