BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 32768421)

  • 1. CRISPR-Cas13d Induces Efficient mRNA Knockdown in Animal Embryos.
    Kushawah G; Hernandez-Huertas L; Abugattas-Nuñez Del Prado J; Martinez-Morales JR; DeVore ML; Hassan H; Moreno-Sanchez I; Tomas-Gallardo L; Diaz-Moscoso A; Monges DE; Guelfo JR; Theune WC; Brannan EO; Wang W; Corbin TJ; Moran AM; Sánchez Alvarado A; Málaga-Trillo E; Takacs CM; Bazzini AA; Moreno-Mateos MA
    Dev Cell; 2020 Sep; 54(6):805-817.e7. PubMed ID: 32768421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas13d-mediated efficient KDM5B mRNA knockdown in porcine somatic cells and parthenogenetic embryos.
    Bi D; Yao J; Wang Y; Qin G; Zhang Y; Wang Y; Zhao J
    Reproduction; 2021 Jul; 162(2):149-160. PubMed ID: 34096883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas13 Precision Transcriptome Engineering in Cancer.
    Granados-Riveron JT; Aquino-Jarquin G
    Cancer Res; 2018 Aug; 78(15):4107-4113. PubMed ID: 30021724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in CRISPR-Cas systems for RNA targeting, tracking and editing.
    Wang F; Wang L; Zou X; Duan S; Li Z; Deng Z; Luo J; Lee SY; Chen S
    Biotechnol Adv; 2019; 37(5):708-729. PubMed ID: 30926472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Inhibition of HIV Using CRISPR/Cas13d Nuclease System.
    Nguyen H; Wilson H; Jayakumar S; Kulkarni V; Kulkarni S
    Viruses; 2021 Sep; 13(9):. PubMed ID: 34578431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cas13d: A New Molecular Scissor for Transcriptome Engineering.
    Gupta R; Ghosh A; Chakravarti R; Singh R; Ravichandiran V; Swarnakar S; Ghosh D
    Front Cell Dev Biol; 2022; 10():866800. PubMed ID: 35433685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shotgun knockdown of RNA by CRISPR-Cas13d in fission yeast.
    Chen Z; Zheng S; Fu C
    J Cell Sci; 2023 Mar; 136(6):. PubMed ID: 36825467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient nanoparticle-based CRISPR-Cas13d induced mRNA disruption of an eye pigmentation gene in the white-backed planthopper, Sogatella furcifera.
    Ma YF; Zhang MQ; Gong LL; Liu XZ; Long GJ; Guo H; Hull JJ; Dewer Y; He M; He P
    Insect Sci; 2023 Dec; 30(6):1552-1564. PubMed ID: 37202920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas13 Inhibitors Block RNA Editing in Bacteria and Mammalian Cells.
    Lin P; Qin S; Pu Q; Wang Z; Wu Q; Gao P; Schettler J; Guo K; Li R; Li G; Huang C; Wei Y; Gao GF; Jiang J; Wu M
    Mol Cell; 2020 Jun; 78(5):850-861.e5. PubMed ID: 32348779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted RNA Knockdown by a Type III CRISPR-Cas Complex in Zebrafish.
    Fricke T; Smalakyte D; Lapinski M; Pateria A; Weige C; Pastor M; Kolano A; Winata C; Siksnys V; Tamulaitis G; Bochtler M
    CRISPR J; 2020 Aug; 3(4):299-313. PubMed ID: 32833532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing robotic and manual injection methods in zebrafish embryos for high-throughput RNA silencing using CRISPR-RfxCas13d.
    Del Prado JA; Ding Y; Sonneville J; der Kolk KV; Moreno-Mateos MA; Málaga-Trillo E; Spaink HP
    Biotechniques; 2024 May; 76(5):183-191. PubMed ID: 38420933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d.
    Zhang C; Konermann S; Brideau NJ; Lotfy P; Wu X; Novick SJ; Strutzenberg T; Griffin PR; Hsu PD; Lyumkis D
    Cell; 2018 Sep; 175(1):212-223.e17. PubMed ID: 30241607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome editing of rodents by electroporation of CRISPR/Cas9 into frozen-warmed pronuclear-stage embryos.
    Kaneko T; Nakagawa Y
    Cryobiology; 2020 Feb; 92():231-234. PubMed ID: 31987837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9 technology as a potent molecular tool for gene therapy.
    Karimian A; Azizian K; Parsian H; Rafieian S; Shafiei-Irannejad V; Kheyrollah M; Yousefi M; Majidinia M; Yousefi B
    J Cell Physiol; 2019 Aug; 234(8):12267-12277. PubMed ID: 30697727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized CRISPR-RfxCas13d system for RNA targeting in zebrafish embryos.
    Hernandez-Huertas L; Kushawah G; Diaz-Moscoso A; Tomas-Gallardo L; Moreno-Sanchez I; da Silva Pescador G; Bazzini AA; Moreno-Mateos MA
    STAR Protoc; 2022 Mar; 3(1):101058. PubMed ID: 35005640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [CRISPR-Cas system as molecular scissors for gene therapy].
    Heinz GA; Mashreghi MF
    Z Rheumatol; 2017 Feb; 76(1):46-49. PubMed ID: 28124743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted Base Editing Systems Are Available for Plants.
    Marzec M; Hensel G
    Trends Plant Sci; 2018 Nov; 23(11):955-957. PubMed ID: 30224156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Knockdown the expression of ku70 and lig4 in HEK293T cells by CRISPR/Cas13 system].
    Wang H; Li G; Huang G; Li Z; Zheng E; Xu Z; Yang H; Wu Z; Zhang X; Liu D
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1414-1421. PubMed ID: 32748599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Off- and on-target effects of genome editing in mouse embryos.
    Ayabe S; Nakashima K; Yoshiki A
    J Reprod Dev; 2019 Feb; 65(1):1-5. PubMed ID: 30518723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila.
    Xu J; Ren X; Sun J; Wang X; Qiao HH; Xu BW; Liu LP; Ni JQ
    J Genet Genomics; 2015 Apr; 42(4):141-9. PubMed ID: 25953352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.