These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32768806)

  • 1. Application of a unified probabilistic framework to the dose-response assessment of acrolein.
    Blessinger T; Davis A; Chiu WA; Stanek J; Woodall GM; Gift J; Thayer KA; Bussard D
    Environ Int; 2020 Oct; 143():105953. PubMed ID: 32768806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic framework for the estimation of the adult and child toxicokinetic intraspecies uncertainty factors.
    Pelekis M; Nicolich MJ; Gauthier JS
    Risk Anal; 2003 Dec; 23(6):1239-55. PubMed ID: 14641898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of systematic evidence mapping to assess the impact of new research when updating health reference values: A case example using acrolein.
    Keshava C; Davis JA; Stanek J; Thayer KA; Galizia A; Keshava N; Gift J; Vulimiri SV; Woodall G; Gigot C; Garcia K; Greenhalgh A; Schulz B; Volkoff S; Camargo K; Persad AS
    Environ Int; 2020 Oct; 143():105956. PubMed ID: 32702594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Unified Probabilistic Framework for Dose-Response Assessment of Human Health Effects.
    Chiu WA; Slob W
    Environ Health Perspect; 2015 Dec; 123(12):1241-54. PubMed ID: 26006063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of probabilistic methods to address variability and uncertainty in estimating risks for non-cancer health effects.
    Nielsen GH; Heiger-Bernays WJ; Levy JI; White RF; Axelrad DA; Lam J; Chartres N; Abrahamsson DP; Rayasam SDG; Shaffer RM; Zeise L; Woodruff TJ; Ginsberg GL
    Environ Health; 2023 Jan; 21(Suppl 1):129. PubMed ID: 36635712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of a site-specific reference dose for methylmercury for fish-eating populations.
    Shipp AM; Gentry PR; Lawrence G; Van Landingham C; Covington T; Clewell HJ; Gribben K; Crump K
    Toxicol Ind Health; 2000 Nov; 16(9-10):335-438. PubMed ID: 11762928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond the RfD: Broad Application of a Probabilistic Approach to Improve Chemical Dose-Response Assessments for Noncancer Effects.
    Chiu WA; Axelrad DA; Dalaijamts C; Dockins C; Shao K; Shapiro AJ; Paoli G
    Environ Health Perspect; 2018 Jun; 126(6):067009. PubMed ID: 29968566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experiencing a probabilistic approach to clarify and disclose uncertainties when setting occupational exposure limits.
    Vernez D; Fraize-Frontier S; Vincent R; Binet S; Rousselle C
    Int J Occup Med Environ Health; 2018 Jul; 31(4):475-489. PubMed ID: 29546881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the effect of probability distributions of input variables in public health risk assessment.
    Hamed MM; Bedient PB
    Risk Anal; 1997 Feb; 17(1):97-105. PubMed ID: 9131829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probabilistic dose-response modeling: case study using dichloromethane PBPK model results.
    Marino DJ; Starr TB
    Regul Toxicol Pharmacol; 2007 Dec; 49(3):285-300. PubMed ID: 17949874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A probabilistic framework for the reference dose (probabilistic RfD).
    Swartout JC; Price PS; Dourson ML; Carlson-Lynch HL; Keenan RE
    Risk Anal; 1998 Jun; 18(3):271-82. PubMed ID: 9664723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Percentiles of the product of uncertainty factors for establishing probabilistic reference doses.
    Gaylor DW; Kodell RL
    Risk Anal; 2000 Apr; 20(2):245-50. PubMed ID: 10859783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical probabilistic modeling of dose-volume histograms.
    Wahl N; Hennig P; Wieser HP; Bangert M
    Med Phys; 2020 Oct; 47(10):5260-5273. PubMed ID: 32740930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Unified Probabilistic Framework for Cancer Risk Management.
    Rheinberger CM
    Risk Anal; 2021 Apr; 41(4):584-595. PubMed ID: 33340129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A probabilistic effect assessment model for hazardous substances at the workplace.
    Schneider K; Schuhmacher-Wolz U; Hassauer M; Darschnik S; Elmshäuser E; Mosbach-Schulz O
    Regul Toxicol Pharmacol; 2006 Mar; 44(2):172-81. PubMed ID: 16356615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. APROBA-Plus: A probabilistic tool to evaluate and express uncertainty in hazard characterization and exposure assessment of substances.
    Bokkers BGH; Mengelers MJ; Bakker MI; Chiu WA; Slob W
    Food Chem Toxicol; 2017 Dec; 110():408-417. PubMed ID: 29074418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measures of compounding conservatism in probabilistic risk assessment.
    Cullen AC
    Risk Anal; 1994 Aug; 14(4):389-93. PubMed ID: 7972951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in Probabilistic Dose-Response Assessment to Inform Risk-Based Decision Making.
    Chiu WA; Paoli GM
    Risk Anal; 2021 Apr; 41(4):596-609. PubMed ID: 32966629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mode of action-based probabilistic framework of dose-response assessment for nonmutagenic liver carcinogens: a case study of PCB-126.
    Zhou Y; Chen Q; Klaunig JE; Shao K
    Toxicol Sci; 2023 Nov; 196(2):250-260. PubMed ID: 37643630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.