These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32768840)

  • 21. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils.
    Qiao JT; Liu TX; Wang XQ; Li FB; Lv YH; Cui JH; Zeng XD; Yuan YZ; Liu CP
    Chemosphere; 2018 Mar; 195():260-271. PubMed ID: 29272795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The characterization of arsenic biotransformation microbes in paddy soil after straw biochar and straw amendments.
    Yang YP; Tang XJ; Zhang HM; Cheng WD; Duan GL; Zhu YG
    J Hazard Mater; 2020 Jun; 391():122200. PubMed ID: 32044634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silicon-rich amendments in rice paddies: Effects on arsenic uptake and biogeochemistry.
    Limmer MA; Mann J; Amaral DC; Vargas R; Seyfferth AL
    Sci Total Environ; 2018 May; 624():1360-1368. PubMed ID: 29929248
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of biochar amendment on the soil silicon cycle in a soil-rice ecosystem.
    Wang Y; Xiao X; Zhang K; Chen B
    Environ Pollut; 2019 May; 248():823-833. PubMed ID: 30856498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical-microbial effects of acetic acid, oxalic acid and citric acid on arsenic transformation and migration in the rhizosphere of paddy soil.
    Yang J; Liu X; Fei C; Lu H; Ma Y; Ma Z; Ye W
    Ecotoxicol Environ Saf; 2023 Jul; 259():115046. PubMed ID: 37235901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochar significantly alters rhizobacterial communities and reduces Cd concentration in rice grains grown on Cd-contaminated soils.
    Wang R; Wei S; Jia P; Liu T; Hou D; Xie R; Lin Z; Ge J; Qiao Y; Chang X; Lu L; Tian S
    Sci Total Environ; 2019 Aug; 676():627-638. PubMed ID: 31051368
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system.
    Rajendran M; Shi L; Wu C; Li W; An W; Liu Z; Xue S
    Chemosphere; 2019 May; 222():314-322. PubMed ID: 30708165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elucidating the redox-driven dynamic interactions between arsenic and iron-impregnated biochar in a paddy soil using geochemical and spectroscopic techniques.
    Yang X; Shaheen SM; Wang J; Hou D; Ok YS; Wang SL; Wang H; Rinklebe J
    J Hazard Mater; 2022 Jan; 422():126808. PubMed ID: 34399221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Iron modification to silicon-rich biochar and alternative water management to decrease arsenic accumulation in rice (Oryza sativa L.).
    Kumarathilaka P; Bundschuh J; Seneweera S; Marchuk A; Ok YS
    Environ Pollut; 2021 Oct; 286():117661. PubMed ID: 34438503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selenium- and chitosan-modified biochars reduce methylmercury contents in rice seeds with recruiting Bacillus to inhibit methylmercury production.
    Guo P; Du H; Zhao W; Xiong B; Wang M; He M; Flemetakis E; Hänsch R; Ma M; Rennenberg H; Wang D
    J Hazard Mater; 2024 Mar; 465():133236. PubMed ID: 38141298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Transformation and mobility of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages of rice].
    Yang WT; Wang YJ; Zhou H; Yi KX; Zeng M; Peng PQ; Liao BH
    Huan Jing Ke Xue; 2015 Feb; 36(2):694-9. PubMed ID: 26031100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The characteristic difference between non-drilosphere and drilosphere-aged biochar: Revealing that earthworms accelerate the aging of biochar.
    Wang J; Liu J; Chang L; Pan Y; Zhai L; Shen Z; Shi L; Chen Y
    Chemosphere; 2023 Apr; 321():138141. PubMed ID: 36804251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Water management impacts the soil microbial communities and total arsenic and methylated arsenicals in rice grains.
    Wang M; Tang Z; Chen XP; Wang X; Zhou WX; Tang Z; Zhang J; Zhao FJ
    Environ Pollut; 2019 Apr; 247():736-744. PubMed ID: 30721864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The translocation of antimony in soil-rice system with comparisons to arsenic: Alleviation of their accumulation in rice by simultaneous use of Fe(II) and NO
    Wang X; Li F; Yuan C; Li B; Liu T; Liu C; Du Y; Liu C
    Sci Total Environ; 2019 Feb; 650(Pt 1):633-641. PubMed ID: 30212692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduced arsenic availability in paddy soil through Fe-organic ligand complexation mediated by bamboo biochar.
    Tang L; Xiong L; Zhang H; Joseph A; Wang Y; Li J; Yuan X; Rene ER; Zhu N
    Chemosphere; 2024 Feb; 349():140790. PubMed ID: 38013023
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of amendment of biochar supplemented with Si on Cd mobility and rice uptake over three rice growing seasons in an acidic Cd-tainted paddy from central South China.
    Sui F; Wang J; Zuo J; Joseph S; Munroe P; Drosos M; Li L; Pan G
    Sci Total Environ; 2020 Mar; 709():136101. PubMed ID: 31905580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Goethite-modified biochar restricts the mobility and transfer of cadmium in soil-rice system.
    Kashif Irshad M; Chen C; Noman A; Ibrahim M; Adeel M; Shang J
    Chemosphere; 2020 Mar; 242():125152. PubMed ID: 31669984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cadmium and arsenic accumulation during the rice growth period under in situ remediation.
    Gu JF; Zhou H; Tang HL; Yang WT; Zeng M; Liu ZM; Peng PQ; Liao BH
    Ecotoxicol Environ Saf; 2019 Apr; 171():451-459. PubMed ID: 30639871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silicon fertilization influences microbial assemblages in rice roots and decreases arsenic concentration in grain: A five-season in-situ remediation field study.
    Gao Z; Jiang Y; Yin C; Zheng W; Nikolic N; Nikolic M; Liang Y
    J Hazard Mater; 2022 Feb; 423(Pt B):127180. PubMed ID: 34544001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Fe-Mn-Ce oxide-modified biochar on As accumulation, morphology, and quality of rice (Oryza sativa L.).
    Lian F; Liu X; Gao M; Li H; Qiu W; Song Z
    Environ Sci Pollut Res Int; 2020 May; 27(15):18196-18207. PubMed ID: 32172416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.