BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

616 related articles for article (PubMed ID: 32768841)

  • 21. Effect and mechanism of cellulose nanofibrils on the active functions of biopolymer-based nanocomposite films.
    Yu Z; Alsammarraie FK; Nayigiziki FX; Wang W; Vardhanabhuti B; Mustapha A; Lin M
    Food Res Int; 2017 Sep; 99(Pt 1):166-172. PubMed ID: 28784473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanocomposite edible films from mango puree reinforced with cellulose nanofibers.
    Azeredo HM; Mattoso LH; Wood D; Williams TG; Avena-Bustillos RJ; McHugh TH
    J Food Sci; 2009 Jun; 74(5):N31-5. PubMed ID: 19646052
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physical, Mechanical, and Water Vapor Barrier Properties of Starch/Cellulose Nanofiber/Thymol Bionanocomposite Films.
    Othman SH; Wane BM; Nordin N; Noor Hasnan NZ; A Talib R; Karyadi JNW
    Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Natural Biodegradable Poly(3-hydroxybutyrate-
    Li F; Yu HY; Wang YY; Zhou Y; Zhang H; Yao JM; Abdalkarim SYH; Tam KC
    J Agric Food Chem; 2019 Oct; 67(39):10954-10967. PubMed ID: 31365242
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface.
    Benhamou K; Kaddami H; Magnin A; Dufresne A; Ahmad A
    Carbohydr Polym; 2015 May; 122():202-11. PubMed ID: 25817660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alternating Stacking of Nanocrystals and Nanofibers into Ultrastrong Chiral Biocomposite Laminates.
    Zhang X; Xiong R; Kang S; Yang Y; Tsukruk VV
    ACS Nano; 2020 Nov; 14(11):14675-14685. PubMed ID: 32910639
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PVA/CNC/TiO
    Nguyen SV; Lee BK
    Carbohydr Polym; 2022 Dec; 298():120064. PubMed ID: 36241263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites.
    Hamou KB; Kaddami H; Dufresne A; Boufi S; Magnin A; Erchiqui F
    Carbohydr Polym; 2018 Feb; 181():1061-1070. PubMed ID: 29253932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional Nanocellulose, Alginate and Chitosan Nanocomposites Designed as Active Film Packaging Materials.
    Lavrič G; Oberlintner A; Filipova I; Novak U; Likozar B; Vrabič-Brodnjak U
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved mechanical properties of k-carrageenan-based nanocomposite films reinforced with cellulose nanocrystals.
    Kassab Z; Aziz F; Hannache H; Ben Youcef H; El Achaby M
    Int J Biol Macromol; 2019 Feb; 123():1248-1256. PubMed ID: 30529205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polylactic Acid Cellulose Nanocomposite Films Comprised of Wood and Tunicate CNCs Modified with Tannic Acid and Octadecylamine.
    Dunlop MJ; Sabo R; Bissessur R; Acharya B
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771218
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resilient high oxygen barrier multilayer films of nanocellulose and polylactide.
    Guivier M; Almeida G; Domenek S; Chevigny C
    Carbohydr Polym; 2023 Jul; 312():120761. PubMed ID: 37059524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites.
    Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM
    Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanocellulose-based multilayer barrier coatings for gas, oil, and grease resistance.
    Tyagi P; Lucia LA; Hubbe MA; Pal L
    Carbohydr Polym; 2019 Feb; 206():281-288. PubMed ID: 30553323
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of hydration on the material and mechanical properties of cellulose nanocrystal-alginate composites.
    Smyth M; M'Bengue MS; Terrien M; Picart C; Bras J; Foster EJ
    Carbohydr Polym; 2018 Jan; 179():186-195. PubMed ID: 29111041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation and characterization of transparent PMMA-cellulose-based nanocomposites.
    Kiziltas EE; Kiziltas A; Bollin SC; Gardner DJ
    Carbohydr Polym; 2015; 127():381-9. PubMed ID: 25965497
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving the performance of edible food packaging films by using nanocellulose as an additive.
    Zhang W; Zhang Y; Cao J; Jiang W
    Int J Biol Macromol; 2021 Jan; 166():288-296. PubMed ID: 33129905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanocomposites Assembled via Electrostatic Interactions between Cellulose Nanocrystals and a Cationic Polymer.
    Engkagul V; Rader C; Pon N; Rowan SJ; Weder C
    Biomacromolecules; 2021 Dec; 22(12):5087-5096. PubMed ID: 34734702
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellulose nanocrystals from grape pomace and their use for the development of starch-based nanocomposite films.
    Coelho CCS; Silva RBS; Carvalho CWP; Rossi AL; Teixeira JA; Freitas-Silva O; Cabral LMC
    Int J Biol Macromol; 2020 Sep; 159():1048-1061. PubMed ID: 32407944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Harmonized Life-Cycle Inventories of Nanocellulose and Its Application in Composites.
    Kane S; Miller SA; Kurtis KE; Youngblood JP; Landis EN; Weiss WJ
    Environ Sci Technol; 2023 Dec; 57(48):19137-19147. PubMed ID: 37967377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.