BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 32768932)

  • 1. Noncoding RNAs in peritoneal fibrosis: Background, Mechanism, and Therapeutic Approach.
    Guo Y; Wang L; Gou R; Tang L; Liu P
    Biomed Pharmacother; 2020 Sep; 129():110385. PubMed ID: 32768932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The expression profiling and ontology analysis of noncoding RNAs in peritoneal fibrosis induced by peritoneal dialysis fluid.
    Liu Y; Guo R; Hao G; Xiao J; Bao Y; Zhou J; Chen Q; Wei X
    Gene; 2015 Jun; 564(2):210-9. PubMed ID: 25827714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peritoneal fibrosis and epigenetic modulation.
    Wang Y; Shi Y; Tao M; Zhuang S; Liu N
    Perit Dial Int; 2021 Mar; 41(2):168-178. PubMed ID: 32662737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Curcumin ameliorates peritoneal fibrosis via inhibition of transforming growth factor-activated kinase 1 (TAK1) pathway in a rat model of peritoneal dialysis.
    Zhao JL; Zhang T; Shao X; Zhu JJ; Guo MZ
    BMC Complement Altern Med; 2019 Oct; 19(1):280. PubMed ID: 31647008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging Role of Non-Coding RNAs in Esophageal Squamous Cell Carcinoma.
    Feng Q; Zhang H; Yao D; Chen WD; Wang YD
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31905958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNA-21 promotes the progression of peritoneal fibrosis through the activation of the TGF-β/Smad signaling pathway: An in vitro and in vivo study.
    Ma YL; Chen F; Yang SX; Chen BP; Shi J
    Int J Mol Med; 2018 Feb; 41(2):1030-1038. PubMed ID: 29207016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preventing peritoneal membrane fibrosis in peritoneal dialysis patients.
    Zhou Q; Bajo MA; Del Peso G; Yu X; Selgas R
    Kidney Int; 2016 Sep; 90(3):515-24. PubMed ID: 27282936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of non‑coding RNAs in the pathogenesis of myocardial ischemia/reperfusion injury (Review).
    Li Q; Li Z; Fan Z; Yang Y; Lu C
    Int J Mol Med; 2021 Apr; 47(4):. PubMed ID: 33576444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blocking core fucosylation of epidermal growth factor (EGF) receptor prevents peritoneal fibrosis progression.
    Yu C; Yang N; Wang W; Du X; Tang Q; Lin H; Li L
    Ren Fail; 2021 Dec; 43(1):869-877. PubMed ID: 33993842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LncRNA RPL29P2 promotes peritoneal fibrosis and impairs peritoneal transport function via miR-1184 in peritoneal dialysis.
    Li H; Zhang Y; Che M; Wang H; Li S; He P; Sun S; Xu G; Huang C; Liu X; Bai M; Zhou M; Su B; Zhang P; He L
    Int J Med Sci; 2024; 21(6):1049-1063. PubMed ID: 38774747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Which long noncoding RNAs and circular RNAs contribute to inflammatory bowel disease?
    Lin L; Zhou G; Chen P; Wang Y; Han J; Chen M; He Y; Zhang S
    Cell Death Dis; 2020 Jun; 11(6):456. PubMed ID: 32541691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA-302c modulates peritoneal dialysis-associated fibrosis by targeting connective tissue growth factor.
    Li X; Liu H; Sun L; Zhou X; Yuan X; Chen Y; Liu F; Liu Y; Xiao L
    J Cell Mol Med; 2019 Apr; 23(4):2372-2383. PubMed ID: 30693641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia.
    Liu Y; Cheng Z; Pang Y; Cui L; Qian T; Quan L; Zhao H; Shi J; Ke X; Fu L
    J Hematol Oncol; 2019 May; 12(1):51. PubMed ID: 31126316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-fibrotic effects of valproic acid in experimental peritoneal fibrosis.
    Costalonga EC; de Freitas LJ; Aragone DDSP; Silva FMO; Noronha IL
    PLoS One; 2017; 12(9):e0184302. PubMed ID: 28873458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long noncoding RNA AK089579 inhibits epithelial-to-mesenchymal transition of peritoneal mesothelial cells by competitively binding to microRNA-296-3p via DOK2 in peritoneal fibrosis.
    Zhang XW; Wang L; Ding H
    FASEB J; 2019 Apr; 33(4):5112-5125. PubMed ID: 30652956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay Between Long Noncoding RNAs and MicroRNAs in Cancer.
    Russo F; Fiscon G; Conte F; Rizzo M; Paci P; Pellegrini M
    Methods Mol Biol; 2018; 1819():75-92. PubMed ID: 30421400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNAs in peritoneal fibrosis: a systematic review.
    Yanai K; Ishii H; Aomatsu A; Ishibashi K; Morishita Y
    Discov Med; 2018 Dec; 26(145):271-280. PubMed ID: 30695676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of miRNAs, lncRNAs and circRNAs on osteoporosis as regulatory factors of bone homeostasis (Review).
    Li Z; Xue H; Tan G; Xu Z
    Mol Med Rep; 2021 Nov; 24(5):. PubMed ID: 34505632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIF1A and VEGF regulate each other by competing endogenous RNA mechanism and involve in the pathogenesis of peritoneal fibrosis.
    Li J; Li SX; Gao XH; Zhao LF; Du J; Wang TY; Wang L; Zhang J; Wang HY; Dong R; Guo ZY
    Pathol Res Pract; 2019 Apr; 215(4):644-652. PubMed ID: 30598338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noncoding RNAs: New Players in Cancers.
    Chen X; Fan S; Song E
    Adv Exp Med Biol; 2016; 927():1-47. PubMed ID: 27376730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.