These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32769071)

  • 21. Cortical bone histomorphometry in male femoral neck: the investigation of age-association and regional differences.
    Tong X; Burton IS; Isaksson H; Jurvelin JS; Kröger H
    Calcif Tissue Int; 2015 Apr; 96(4):295-306. PubMed ID: 25646589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The importance of murine cortical bone microstructure for microcrack initiation and propagation.
    Voide R; Schneider P; Stauber M; van Lenthe GH; Stampanoni M; Müller R
    Bone; 2011 Dec; 49(6):1186-93. PubMed ID: 21884836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micromechanical evaluation of cortical bone using in situ XCT indentation and digital volume correlation.
    Karali A; Kao AP; Zekonyte J; Blunn G; Tozzi G
    J Mech Behav Biomed Mater; 2021 Mar; 115():104298. PubMed ID: 33445104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intracortical stiffness of mid-diaphysis femur bovine bone: lacunar-canalicular based homogenization numerical solutions and microhardness measurements.
    Hage IS; Hamade RF
    J Mater Sci Mater Med; 2017 Sep; 28(9):135. PubMed ID: 28762142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of immobilization on vascular canal orientation in rat cortical bone.
    Britz HM; Jokihaara J; Leppänen OV; Järvinen TL; Cooper DM
    J Anat; 2012 Jan; 220(1):67-76. PubMed ID: 22050694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Volume effects on fatigue life of equine cortical bone.
    Bigley RF; Gibeling JC; Stover SM; Hazelwood SJ; Fyhrie DP; Martin RB
    J Biomech; 2007; 40(16):3548-54. PubMed ID: 17632110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison between micro-CT and histology for the evaluation of cortical bone: effect of polymethylmethacrylate embedding on structural parameters.
    Particelli F; Mecozzi L; Beraudi A; Montesi M; Baruffaldi F; Viceconti M
    J Microsc; 2012 Mar; 245(3):302-10. PubMed ID: 22106931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties.
    Martin RB; Boardman DL
    J Biomech; 1993 Sep; 26(9):1047-54. PubMed ID: 8408087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone quality in prehistoric, Cis-Baikal forager femora: a micro-CT analysis of cortical canal microstructure.
    Faccia K; Buie H; Weber A; Bazaliiskii VI; Goriunova OI; Boyd S; Hallgrímsson B; Katzenberg MA
    Am J Phys Anthropol; 2014 Aug; 154(4):486-97. PubMed ID: 24839056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of fatigue on microstructure and mechanical properties of bone organic matrix under compression.
    Trębacz H; Zdunek A; Cybulska J; Pieczywek P
    Australas Phys Eng Sci Med; 2013 Mar; 36(1):43-54. PubMed ID: 23393006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regional differences in cortical porosity in the fractured femoral neck.
    Bell KL; Loveridge N; Power J; Garrahan N; Meggitt BF; Reeve J
    Bone; 1999 Jan; 24(1):57-64. PubMed ID: 9916785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A three-dimensional geometric quantification of human cortical canals using an innovative method with micro-computed tomographic data.
    Roothaer X; Delille R; Morvan H; Bennani B; Markiewicz E; Fontaine C
    Micron; 2018 Nov; 114():62-71. PubMed ID: 30103076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microcomputed tomography of the femur of diabetic rats: alterations of trabecular and cortical bone microarchitecture and vasculature-a feasibility study.
    Zeitoun D; Caliaperoumal G; Bensidhoum M; Constans JM; Anagnostou F; Bousson V
    Eur Radiol Exp; 2019 Apr; 3(1):17. PubMed ID: 30972589
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bone vascular supply in monitor lizards (Squamata: Varanidae): influence of size, growth, and phylogeny.
    de Buffrénil V; Houssaye A; Böhme W
    J Morphol; 2008 May; 269(5):533-43. PubMed ID: 18157866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of the basic multicellular unit and lamellar thickness on osteonal fatigue life.
    Pellegrino G; Roman M; Fritton JC
    J Biomech; 2017 Jul; 60():116-123. PubMed ID: 28711163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Osteonal crack barriers in ovine compact bone.
    Mohsin S; O'Brien FJ; Lee TC
    J Anat; 2006 Jan; 208(1):81-9. PubMed ID: 16420381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A numerical investigation and experimental verification of size effects in loaded bovine cortical bone.
    Frame JC; Wheel MA; Riches PE
    Int J Numer Method Biomed Eng; 2018 Jan; 34(1):. PubMed ID: 28558162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The probability of whole-bone fatigue fracture can be accurately predicted using specimen-specific finite element analysis incorporating a stochastic failure model.
    Haider IT; Pohl AJ; Edwards WB
    J Biomech; 2022 Oct; 143():111273. PubMed ID: 36049387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vascular canals in bovine cortical bone studied by corrosion casting.
    Arsenault AL
    Calcif Tissue Int; 1990 Nov; 47(5):320-5. PubMed ID: 2257526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of bone microstructure on the initiation and growth of microcracks.
    O'Brien FJ; Taylor D; Clive Lee T
    J Orthop Res; 2005 Mar; 23(2):475-80. PubMed ID: 15734265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.