These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32769100)

  • 1. Estimation of Natural Selection and Allele Age from Time Series Allele Frequency Data Using a Novel Likelihood-Based Approach.
    He Z; Dai X; Beaumont M; Yu F
    Genetics; 2020 Oct; 216(2):463-480. PubMed ID: 32769100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting and Quantifying Natural Selection at Two Linked Loci from Time Series Data of Allele Frequencies with Forward-in-Time Simulations.
    He Z; Dai X; Beaumont M; Yu F
    Genetics; 2020 Oct; 216(2):521-541. PubMed ID: 32826299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian inference of selection in the Wright-Fisher diffusion model.
    Gory JJ; Herbei R; Kubatko LS
    Stat Appl Genet Mol Biol; 2018 Jun; 17(3):. PubMed ID: 29874197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast and Accurate Estimation of Selection Coefficients and Allele Histories from Ancient and Modern DNA.
    Vaughn AH; Nielsen R
    Mol Biol Evol; 2024 Aug; 41(8):. PubMed ID: 39078618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian Inference of Natural Selection from Allele Frequency Time Series.
    Schraiber JG; Evans SN; Slatkin M
    Genetics; 2016 May; 203(1):493-511. PubMed ID: 27010022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inference of Selection from Genetic Time Series Using Various Parametric Approximations to the Wright-Fisher Model.
    Paris C; Servin B; Boitard S
    G3 (Bethesda); 2019 Dec; 9(12):4073-4086. PubMed ID: 31597676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating allele age and selection coefficient from time-serial data.
    Malaspinas AS; Malaspinas O; Evans SN; Slatkin M
    Genetics; 2012 Oct; 192(2):599-607. PubMed ID: 22851647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating Temporally Variable Selection Intensity from Ancient DNA Data.
    He Z; Dai X; Lyu W; Beaumont M; Yu F
    Mol Biol Evol; 2023 Mar; 40(3):. PubMed ID: 36661852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inference in population genetics using forward and backward, discrete and continuous time processes.
    Bergman J; Schrempf D; Kosiol C; Vogl C
    J Theor Biol; 2018 Feb; 439():166-180. PubMed ID: 29229523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conditional likelihood is required to estimate the selection coefficient in ancient DNA.
    Valleriani A
    Sci Rep; 2016 Aug; 6():31561. PubMed ID: 27527811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Population genetics inference for longitudinally-sampled mutants under strong selection.
    Lacerda M; Seoighe C
    Genetics; 2014 Nov; 198(3):1237-50. PubMed ID: 25213172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Approximate Markov Model for the Wright-Fisher Diffusion and Its Application to Time Series Data.
    Ferrer-Admetlla A; Leuenberger C; Jensen JD; Wegmann D
    Genetics; 2016 Jun; 203(2):831-46. PubMed ID: 27038112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of 2Nes from temporal allele frequency data.
    Bollback JP; York TL; Nielsen R
    Genetics; 2008 May; 179(1):497-502. PubMed ID: 18493066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effects of Population Size Histories on Estimates of Selection Coefficients from Time-Series Genetic Data.
    Jewett EM; Steinrücken M; Song YS
    Mol Biol Evol; 2016 Nov; 33(11):3002-3027. PubMed ID: 27550904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating selection coefficients in spatially structured populations from time series data of allele frequencies.
    Mathieson I; McVean G
    Genetics; 2013 Mar; 193(3):973-84. PubMed ID: 23307902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An approximate full-likelihood method for inferring selection and allele frequency trajectories from DNA sequence data.
    Stern AJ; Wilton PR; Nielsen R
    PLoS Genet; 2019 Sep; 15(9):e1008384. PubMed ID: 31518343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring the timing and strength of natural selection and gene migration in the evolution of chicken from ancient DNA data.
    Lyu W; Dai X; Beaumont M; Yu F; He Z
    Mol Ecol Resour; 2022 May; 22(4):1362-1379. PubMed ID: 34783162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating effective population size from temporally spaced samples with a novel, efficient maximum-likelihood algorithm.
    Hui TY; Burt A
    Genetics; 2015 May; 200(1):285-93. PubMed ID: 25747459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling multiallelic selection using a Moran model.
    Muirhead CA; Wakeley J
    Genetics; 2009 Aug; 182(4):1141-57. PubMed ID: 19474205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximum-likelihood and markov chain monte carlo approaches to estimate inbreeding and effective size from allele frequency changes.
    Laval G; SanCristobal M; Chevalet C
    Genetics; 2003 Jul; 164(3):1189-204. PubMed ID: 12871924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.