These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32770052)

  • 1. Plasmon-driven synthesis of individual metal@semiconductor core@shell nanoparticles.
    Kamarudheen R; Kumari G; Baldi A
    Nat Commun; 2020 Aug; 11(1):3957. PubMed ID: 32770052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying Photothermal and Hot Charge Carrier Effects in Plasmon-Driven Nanoparticle Syntheses.
    Kamarudheen R; Castellanos GW; Kamp LPJ; Clercx HJH; Baldi A
    ACS Nano; 2018 Aug; 12(8):8447-8455. PubMed ID: 30071160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-Plasmonic Gold@Copper Sulfide Core-Shell Nanoparticles: Phase-Selective Synthesis and Multimodal Photothermal and Photocatalytic Behaviors.
    Sun M; Fu X; Chen K; Wang H
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46146-46161. PubMed ID: 32955860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances.
    Muhammed MA; Döblinger M; Rodríguez-Fernández J
    J Am Chem Soc; 2015 Sep; 137(36):11666-77. PubMed ID: 26332445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-Scattering Simulations from Spherical Bimetallic Core-Shell Nanoparticles.
    Ruffino F
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33810270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rationally designed dual-plasmonic gold nanorod@cuprous selenide hybrid heterostructures by regioselective overgrowth for
    Shan B; Wang H; Li L; Zhou G; Wen Y; Chen M; Li M
    Theranostics; 2020; 10(25):11656-11672. PubMed ID: 33052239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-Time Tracking the Electrochemical Synthesis of Au@Metal Core-Shell Nanoparticles toward Photo Enhanced Methanol Oxidation.
    Wang H; Zhao W; Zhao Y; Xu CH; Xu JJ; Chen HY
    Anal Chem; 2020 Oct; 92(20):14006-14011. PubMed ID: 32957774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hollow Au-Cu2O Core-Shell Nanoparticles with Geometry-Dependent Optical Properties as Efficient Plasmonic Photocatalysts under Visible Light.
    Lu B; Liu A; Wu H; Shen Q; Zhao T; Wang J
    Langmuir; 2016 Mar; 32(12):3085-94. PubMed ID: 26954100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Control over Bimetallic Core-Shell Nanorods for Surface-Enhanced Raman Spectroscopy.
    van der Hoeven JES; Deng TS; Albrecht W; Olthof LA; van Huis MA; de Jongh PE; van Blaaderen A
    ACS Omega; 2021 Mar; 6(10):7034-7046. PubMed ID: 33748617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale semiconductor-insulator-metal core/shell heterostructures: facile synthesis and light emission.
    Li GP; Chen R; Guo DL; Wong LM; Wang SJ; Sun HD; Wu T
    Nanoscale; 2011 Aug; 3(8):3170-7. PubMed ID: 21698326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of bimetallic interface design on heat generation in plasmonic Au/Pd nanostructures studied by single-particle thermometry.
    Gargiulo J; Herran M; Violi IL; Sousa-Castillo A; Martinez LP; Ezendam S; Barella M; Giesler H; Grzeschik R; Schlücker S; Maier SA; Stefani FD; Cortés E
    Nat Commun; 2023 Jun; 14(1):3813. PubMed ID: 37369657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica-Coated Plasmonic Metal Nanoparticles in Action.
    Hanske C; Sanz-Ortiz MN; Liz-Marzán LM
    Adv Mater; 2018 Jul; 30(27):e1707003. PubMed ID: 29736945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling Surface Plasmon Decay in Core-Shell Nanostructures toward Broadband Light-Driven Catalytic Organic Synthesis.
    Huang H; Zhang L; Lv Z; Long R; Zhang C; Lin Y; Wei K; Wang C; Chen L; Li ZY; Zhang Q; Luo Y; Xiong Y
    J Am Chem Soc; 2016 Jun; 138(21):6822-8. PubMed ID: 27175744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability of Plasmonic Mg-MgO Core-Shell Nanoparticles in Gas-Phase Oxidative Environments.
    Lomonosov V; Yang J; Fan Y; Hofmann S; Ringe E
    Nano Lett; 2024 Jun; 24(23):7084-7090. PubMed ID: 38814251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, Characterization, and Functionalization of Hybrid Au/CdS and Au/ZnS Core/Shell Nanoparticles.
    Tobias A; Qing S; Jones M
    J Vis Exp; 2016 Mar; (109):e53383. PubMed ID: 26967555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating the Roles of Local and Nonlocal Rate Enhancement Mechanisms in Plasmonic Catalysis.
    Elias RC; Linic S
    J Am Chem Soc; 2022 Nov; 144(43):19990-19998. PubMed ID: 36279510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.