These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 32770114)
1. A tailored polylactic acid/polycaprolactone biodegradable and bioactive 3D porous scaffold containing gelatin nanofibers and Taurine for bone regeneration. Samadian H; Farzamfar S; Vaez A; Ehterami A; Bit A; Alam M; Goodarzi A; Darya G; Salehi M Sci Rep; 2020 Aug; 10(1):13366. PubMed ID: 32770114 [TBL] [Abstract][Full Text] [Related]
2. Bioengineered 3D nanocomposite based on gold nanoparticles and gelatin nanofibers for bone regeneration: in vitro and in vivo study. Samadian H; Khastar H; Ehterami A; Salehi M Sci Rep; 2021 Jul; 11(1):13877. PubMed ID: 34230542 [TBL] [Abstract][Full Text] [Related]
3. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552 [TBL] [Abstract][Full Text] [Related]
4. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Ren K; Wang Y; Sun T; Yue W; Zhang H Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():324-332. PubMed ID: 28575991 [TBL] [Abstract][Full Text] [Related]
5. In vitro and in vivo investigation of PLA/PCL scaffold coated with metformin-loaded gelatin nanocarriers in regeneration of critical-sized bone defects. Shahrezaee M; Salehi M; Keshtkari S; Oryan A; Kamali A; Shekarchi B Nanomedicine; 2018 Oct; 14(7):2061-2073. PubMed ID: 29964218 [TBL] [Abstract][Full Text] [Related]
7. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of nanocomposite/nanofibrous functionally graded biomimetic scaffolds for osteochondral tissue regeneration. Hejazi F; Bagheri-Khoulenjani S; Olov N; Zeini D; Solouk A; Mirzadeh H J Biomed Mater Res A; 2021 Sep; 109(9):1657-1669. PubMed ID: 33687800 [TBL] [Abstract][Full Text] [Related]
9. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
10. Bioactive anti-oxidative polycaprolactone/gelatin electrospun nanofibers containing selenium nanoparticles/vitamin E for wound dressing applications. Doostmohammadi M; Forootanfar H; Shakibaie M; Torkzadeh-Mahani M; Rahimi HR; Jafari E; Ameri A; Amirheidari B J Biomater Appl; 2021 Aug; 36(2):193-209. PubMed ID: 33722085 [TBL] [Abstract][Full Text] [Related]
11. Bone regeneration in rat using polycaprolactone/gelatin/epinephrine scaffold. Ehterami A; Khastar H; Soleimannejad M; Salehi M; Nazarnezhad S; Majidi Ghatar J; Bit A; Jafarisani M; Abbaszadeh-Goudarzi G; Shariatifar N Drug Dev Ind Pharm; 2021 Dec; 47(12):1915-1923. PubMed ID: 35484948 [TBL] [Abstract][Full Text] [Related]
12. Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives. Manjunath KS; Sridhar K; Gopinath V; Sankar K; Sundaram A; Gupta N; Shiek ASSJ; Shantanu PS Biomed Mater; 2020 Dec; 16(1):015028. PubMed ID: 33331292 [TBL] [Abstract][Full Text] [Related]
13. BMP-2 and hMSC dual delivery onto 3D printed PLA-Biogel scaffold for critical-size bone defect regeneration in rabbit tibia. Han SH; Cha M; Jin YZ; Lee KM; Lee JH Biomed Mater; 2020 Dec; 16(1):015019. PubMed ID: 32698169 [TBL] [Abstract][Full Text] [Related]
14. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold. Baylan N; Bhat S; Ditto M; Lawrence JG; Lecka-Czernik B; Yildirim-Ayan E Biomed Mater; 2013 Aug; 8(4):045011. PubMed ID: 23804651 [TBL] [Abstract][Full Text] [Related]
15. Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Xu T; Miszuk JM; Zhao Y; Sun H; Fong H Adv Healthc Mater; 2015 Oct; 4(15):2238-46. PubMed ID: 26332611 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. Gomes S; Rodrigues G; Martins G; Henriques C; Silva JC Int J Biol Macromol; 2017 Sep; 102():1174-1185. PubMed ID: 28487195 [TBL] [Abstract][Full Text] [Related]
17. Development of a biodegradable prosthesis through tissue engineering, for the organ-replacement or substitution of the extrahepatic bile duct. Valderrama-Treviño AI; Castell-Rodríguez AE; Hernández-Muñoz R; Vázquez-Torres NA; Macari-Jorge A; Barrera-Mera B; Maciel-Cerda A; Vera-Graziano R; Nuño-Lámbarri N; Montalvo-Javé EE Ann Hepatol; 2024; 29(5):101530. PubMed ID: 39033929 [TBL] [Abstract][Full Text] [Related]
18. Effectiveness of mesenchymal stem cell-seeded onto the 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on the radius bone defect in rat. Oryan A; Hassanajili S; Sahvieh S; Azarpira N Life Sci; 2020 Sep; 257():118038. PubMed ID: 32622947 [TBL] [Abstract][Full Text] [Related]
19. A radial 3D polycaprolactone nanofiber scaffold modified by biomineralization and silk fibroin coating promote bone regeneration in vivo. Xiao L; Wu M; Yan F; Xie Y; Liu Z; Huang H; Yang Z; Yao S; Cai L Int J Biol Macromol; 2021 Mar; 172():19-29. PubMed ID: 33444651 [TBL] [Abstract][Full Text] [Related]
20. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Li D; Chen W; Sun B; Li H; Wu T; Ke Q; Huang C; Ei-Hamshary H; Al-Deyab SS; Mo X Colloids Surf B Biointerfaces; 2016 Oct; 146():632-41. PubMed ID: 27429297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]