BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 32770416)

  • 1. Multisensory inclusive design with sensory substitution.
    Lloyd-Esenkaya T; Lloyd-Esenkaya V; O'Neill E; Proulx MJ
    Cogn Res Princ Implic; 2020 Aug; 5(1):37. PubMed ID: 32770416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representing colour through hearing and touch in sensory substitution devices.
    Hamilton-Fletcher G; Ward J
    Multisens Res; 2013; 26(6):503-32. PubMed ID: 24800410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory substitution as an artificially acquired synaesthesia.
    Ward J; Wright T
    Neurosci Biobehav Rev; 2014 Apr; 41():26-35. PubMed ID: 22885223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haptic-assistive technologies for audition and vision sensory disabilities.
    Sorgini F; Caliò R; Carrozza MC; Oddo CM
    Disabil Rehabil Assist Technol; 2018 May; 13(4):394-421. PubMed ID: 29017361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multisensory and spatial processes in sensory substitution.
    Auvray M
    Restor Neurol Neurosci; 2019; 37(6):609-619. PubMed ID: 31796711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A self-training program for sensory substitution devices.
    Buchs G; Haimler B; Kerem M; Maidenbaum S; Braun L; Amedi A
    PLoS One; 2021; 16(4):e0250281. PubMed ID: 33905446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual-to-auditory sensory substitution alters language asymmetry in both sighted novices and experienced visually impaired users.
    Proulx MJ; Brown DJ; Lloyd-Esenkaya T; Leveson JB; Todorov OS; Watson SH; de Sousa AA
    Appl Ergon; 2020 May; 85():103072. PubMed ID: 32174360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensory Substitution and Multimodal Mental Imagery.
    Nanay B
    Perception; 2017 Sep; 46(9):1014-1026. PubMed ID: 28399717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multisensory perceptual learning and sensory substitution.
    Proulx MJ; Brown DJ; Pasqualotto A; Meijer P
    Neurosci Biobehav Rev; 2014 Apr; 41():16-25. PubMed ID: 23220697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis and Validation of Cross-Modal Generative Adversarial Network for Sensory Substitution.
    Kim M; Park Y; Moon K; Jeong CY
    Int J Environ Res Public Health; 2021 Jun; 18(12):. PubMed ID: 34201269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual experiences in the blind induced by an auditory sensory substitution device.
    Ward J; Meijer P
    Conscious Cogn; 2010 Mar; 19(1):492-500. PubMed ID: 19955003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrotactile and vibrotactile displays for sensory substitution systems.
    Kaczmarek KA; Webster JG; Bach-y-Rita P; Tompkins WJ
    IEEE Trans Biomed Eng; 1991 Jan; 38(1):1-16. PubMed ID: 2026426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioral phenotyping of calcium channel (CACN) subunit α2δ3 knockout mice: Consequences of sensory cross-modal activation.
    Landmann J; Richter F; Classen J; Richter A; Penninger JM; Bechmann I
    Behav Brain Res; 2019 May; 364():393-402. PubMed ID: 29305318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual objects in the auditory system in sensory substitution: how much information do we need?
    Brown DJ; Simpson AJ; Proulx MJ
    Multisens Res; 2014; 27(5-6):337-57. PubMed ID: 25693300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic synaesthesia and sensory substitution.
    Proulx MJ
    Conscious Cogn; 2010 Mar; 19(1):501-3. PubMed ID: 20056449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of visual deprivation and experience on the performance of sensory substitution devices.
    Stronks HC; Nau AC; Ibbotson MR; Barnes N
    Brain Res; 2015 Oct; 1624():140-152. PubMed ID: 26183014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing sensory-substitution devices: Principles, pitfalls and potential1.
    Kristjánsson Á; Moldoveanu A; Jóhannesson ÓI; Balan O; Spagnol S; Valgeirsdóttir VV; Unnthorsson R
    Restor Neurol Neurosci; 2016 Sep; 34(5):769-87. PubMed ID: 27567755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of a visual-to-auditory sensory substitution device using interactive genetic algorithms.
    Wright T; Ward J
    Q J Exp Psychol (Hove); 2013 Aug; 66(8):1620-38. PubMed ID: 23298393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Developments in Haptic Devices Designed for Hearing-Impaired People: A Literature Review.
    Flores Ramones A; Del-Rio-Guerra MS
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-Modal Correspondences Enhance Performance on a Colour-to-Sound Sensory Substitution Device.
    Hamilton-Fletcher G; Wright TD; Ward J
    Multisens Res; 2016; 29(4-5):337-63. PubMed ID: 29384607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.