BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32770510)

  • 1. Biophysical Analysis of Lipid Domains by Fluorescence Microscopy.
    Ventura AE; Santos TCB; Marquês JT; de Almeida RFM; Silva LC
    Methods Mol Biol; 2021; 2187():223-245. PubMed ID: 32770510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amyloid-β Interactions with Lipid Rafts in Biomimetic Systems: A Review of Laboratory Methods.
    Staneva G; Watanabe C; Puff N; Yordanova V; Seigneuret M; Angelova MI
    Methods Mol Biol; 2021; 2187():47-86. PubMed ID: 32770501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1.
    Staneva G; Seigneuret M; Conjeaud H; Puff N; Angelova MI
    Langmuir; 2011 Dec; 27(24):15074-82. PubMed ID: 22026409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy.
    Kahya N
    Chem Phys Lipids; 2006 Jun; 141(1-2):158-68. PubMed ID: 16696961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy.
    Stöckl MT; Herrmann A
    Biochim Biophys Acta; 2010 Jul; 1798(7):1444-56. PubMed ID: 20056106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Lipid Order and Domain Formation in Model Membranes Using Fluorescence Microscopy and Spectroscopy.
    Fuhrer A; Farnoud AM
    Methods Mol Biol; 2021; 2187():271-282. PubMed ID: 32770512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrasting roles of oxidized lipids in modulating membrane microdomains.
    Tsubone TM; Junqueira HC; Baptista MS; Itri R
    Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):660-669. PubMed ID: 30605637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of fluorophore dynamics imaging as a probe for lipid domains in model vesicles and cell membranes.
    Botchway SW; Lewis AM; Stubbs CD
    Eur Biophys J; 2011 Feb; 40(2):131-41. PubMed ID: 20953783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent probe partitioning in giant unilamellar vesicles of 'lipid raft' mixtures.
    Juhasz J; Davis JH; Sharom FJ
    Biochem J; 2010 Sep; 430(3):415-23. PubMed ID: 20642452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biophysical Analysis of Lipid Domains in Mammalian and Yeast Membranes by Fluorescence Spectroscopy.
    Sousa C; Santos FC; Bento-Oliveira A; Mestre B; Silva LC; de Almeida RFM
    Methods Mol Biol; 2021; 2187():247-269. PubMed ID: 32770511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insight into the interaction of TRAF2 C-terminal domain with lipid raft microdomains.
    Ceccarelli A; Di Venere A; Nicolai E; De Luca A; Rosato N; Gratton E; Mei G; Caccuri AM
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Sep; 1862(9):813-822. PubMed ID: 28499815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perfringolysin O association with ordered lipid domains: implications for transmembrane protein raft affinity.
    Nelson LD; Chiantia S; London E
    Biophys J; 2010 Nov; 99(10):3255-63. PubMed ID: 21081073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M
    Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HIV gp41-mediated membrane fusion occurs at edges of cholesterol-rich lipid domains.
    Yang ST; Kiessling V; Simmons JA; White JM; Tamm LK
    Nat Chem Biol; 2015 Jun; 11(6):424-31. PubMed ID: 25915200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining patch-clamping and fluorescence microscopy for quantitative reconstitution of cellular membrane processes with Giant Suspended Bilayers.
    Velasco-Olmo A; Ormaetxea Gisasola J; Martinez Galvez JM; Vera Lillo J; Shnyrova AV
    Sci Rep; 2019 May; 9(1):7255. PubMed ID: 31076583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study.
    Lin WC; Blanchette CD; Ratto TV; Longo ML
    Biophys J; 2006 Jan; 90(1):228-37. PubMed ID: 16214871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of lipid domain-specific protein sorting in giant unilamellar vesicles.
    Stöckl M; Nikolaus J; Herrmann A
    Methods Mol Biol; 2010; 606():115-26. PubMed ID: 20013394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid composition of membrane rafts, isolated with and without detergent, from the spleen of a mouse model of Gaucher disease.
    Hattersley KJ; Hein LK; Fuller M
    Biochem Biophys Res Commun; 2013 Dec; 442(1-2):62-7. PubMed ID: 24220330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution and development of model membranes for physicochemical and functional studies of the membrane lateral heterogeneity.
    Morigaki K; Tanimoto Y
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2012-2017. PubMed ID: 29550290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualizing association of lipidated signaling proteins in heterogeneous membranes--partitioning into subdomains, lipid sorting, interfacial adsorption, and protein association.
    Weise K; Triola G; Janosch S; Waldmann H; Winter R
    Biochim Biophys Acta; 2010 Jul; 1798(7):1409-17. PubMed ID: 20025847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.