BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32770510)

  • 21. Micron-sized domains in quasi single-component giant vesicles.
    Knorr RL; Steinkühler J; Dimova R
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):1957-1964. PubMed ID: 29963995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sphingolipid symmetry governs membrane lipid raft structure.
    Quinn PJ
    Biochim Biophys Acta; 2014 Jul; 1838(7):1922-30. PubMed ID: 24613791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct visualization of solid ordered domains induced by polyene antibiotics in giant unilamellar vesicles.
    Chulkov EG; Efimova SS; Schagina LV; Ostroumova OS
    Chem Phys Lipids; 2014 Oct; 183():204-7. PubMed ID: 25068758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visualizing membrane microdomains by Laurdan 2-photon microscopy.
    Gaus K; Zech T; Harder T
    Mol Membr Biol; 2006; 23(1):41-8. PubMed ID: 16611579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.
    Crane JM; Tamm LK
    Biophys J; 2004 May; 86(5):2965-79. PubMed ID: 15111412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of Aminophospholipids in the Formation of Lipid Rafts in Model Membranes.
    Hazarosova R; Momchilova A; Koumanov K; Petkova D; Staneva G
    J Fluoresc; 2015 Jul; 25(4):1037-43. PubMed ID: 26076930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstitution of proteins on electroformed giant unilamellar vesicles.
    Schmid EM; Richmond DL; Fletcher DA
    Methods Cell Biol; 2015; 128():319-38. PubMed ID: 25997355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visualizing the localization of sulfoglycolipids in lipid raft domains in model membranes and sperm membrane extracts.
    Weerachatyanukul W; Probodh I; Kongmanas K; Tanphaichitr N; Johnston LJ
    Biochim Biophys Acta; 2007 Feb; 1768(2):299-310. PubMed ID: 17045957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endoplasmic reticulum phospholipid scramblase activity revealed after protein reconstitution into giant unilamellar vesicles containing a photostable lipid reporter.
    Mathiassen PPM; Menon AK; Pomorski TG
    Sci Rep; 2021 Jul; 11(1):14364. PubMed ID: 34257324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions.
    Montes LR; Alonso A; Goñi FM; Bagatolli LA
    Biophys J; 2007 Nov; 93(10):3548-54. PubMed ID: 17704162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of glucosylceramide on the biophysical properties of fluid membranes.
    Varela AR; Gonçalves da Silva AM; Fedorov A; Futerman AH; Prieto M; Silva LC
    Biochim Biophys Acta; 2013 Mar; 1828(3):1122-30. PubMed ID: 23196345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative optical microscopy and micromanipulation studies on the lipid bilayer membranes of giant unilamellar vesicles.
    Bagatolli LA; Needham D
    Chem Phys Lipids; 2014 Jul; 181():99-120. PubMed ID: 24632023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipid Raft Isolation by Sucrose Gradient Centrifugation and Visualization of Raft-Located Proteins by Fluorescence Microscopy: The Use of Combined Techniques to Assess Fas/CD95 Location in Rafts During Apoptosis Triggering.
    Gajate C; Mollinedo F
    Methods Mol Biol; 2021; 2187():147-186. PubMed ID: 32770506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The antioxidant vitamin E as a membrane raft modulator: Tocopherols do not abolish lipid domains.
    DiPasquale M; Nguyen MHL; Rickeard BW; Cesca N; Tannous C; Castillo SR; Katsaras J; Kelley EG; Heberle FA; Marquardt D
    Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183189. PubMed ID: 31954106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Native ligands change integrin sequestering but not oligomerization in raft-mimicking lipid mixtures.
    Siegel AP; Kimble-Hill A; Garg S; Jordan R; Naumann CA
    Biophys J; 2011 Oct; 101(7):1642-50. PubMed ID: 21961590
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipid domains in giant unilamellar vesicles and their correspondence with equilibrium thermodynamic phases: a quantitative fluorescence microscopy imaging approach.
    Fidorra M; Garcia A; Ipsen JH; Härtel S; Bagatolli LA
    Biochim Biophys Acta; 2009 Oct; 1788(10):2142-9. PubMed ID: 19703410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescent probes for lipid rafts: from model membranes to living cells.
    Klymchenko AS; Kreder R
    Chem Biol; 2014 Jan; 21(1):97-113. PubMed ID: 24361047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complexity of lipid domains and rafts in giant unilamellar vesicles revealed by combining imaging and microscopic and macroscopic time-resolved fluorescence.
    de Almeida RF; Borst J; Fedorov A; Prieto M; Visser AJ
    Biophys J; 2007 Jul; 93(2):539-53. PubMed ID: 17449668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Capturing suboptical dynamic structures in lipid bilayer patches formed from free-standing giant unilamellar vesicles.
    Bhatia T; Cornelius F; Ipsen JH
    Nat Protoc; 2017 Aug; 12(8):1563-1575. PubMed ID: 28703789
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlated fluorescence-atomic force microscopy of membrane domains: structure of fluorescence probes determines lipid localization.
    Shaw JE; Epand RF; Epand RM; Li Z; Bittman R; Yip CM
    Biophys J; 2006 Mar; 90(6):2170-8. PubMed ID: 16361347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.