BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32770699)

  • 1. An alternative pentose phosphate pathway in human gut bacteria for the degradation of C5 sugars in dietary fibers.
    Garschagen LS; Franke T; Deppenmeier U
    FEBS J; 2021 Mar; 288(6):1839-1858. PubMed ID: 32770699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pentose phosphate pathway of cellulolytic clostridia relies on 6-phosphofructokinase instead of transaldolase.
    Koendjbiharie JG; Hon S; Pabst M; Hooftman R; Stevenson DM; Cui J; Amador-Noguez D; Lynd LR; Olson DG; van Kranenburg R
    J Biol Chem; 2020 Feb; 295(7):1867-1878. PubMed ID: 31871051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A close look at pentose metabolism of gut bacteria.
    Basen M; Kurrer SE
    FEBS J; 2021 Mar; 288(6):1804-1808. PubMed ID: 33063458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exchange reactions catalyzed by group-transferring enzymes oppose the quantitation and the unravelling of the identify of the pentose pathway.
    Flanigan I; Collins JG; Arora KK; MacLeod JK; Williams JF
    Eur J Biochem; 1993 Apr; 213(1):477-85. PubMed ID: 8477719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway.
    Wagner M; Shen L; Albersmeier A; van der Kolk N; Kim S; Cha J; Bräsen C; Kalinowski J; Siebers B; Albers SV
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150511
    [No Abstract]   [Full Text] [Related]  

  • 6. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bypassing the Pentose Phosphate Pathway: Towards Modular Utilization of Xylose.
    Chomvong K; Bauer S; Benjamin DI; Li X; Nomura DK; Cate JH
    PLoS One; 2016; 11(6):e0158111. PubMed ID: 27336308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchy in pentose sugar metabolism in Clostridium acetobutylicum.
    Aristilde L; Lewis IA; Park JO; Rabinowitz JD
    Appl Environ Microbiol; 2015 Feb; 81(4):1452-62. PubMed ID: 25527534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.
    Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S
    Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pathway for the interconversion of hexose and pentose in the parasitic amoeba Entamoeba histolytica.
    Susskind BM; Warren LG; Reeves RE
    Biochem J; 1982 Apr; 204(1):191-6. PubMed ID: 6180735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the role of GAPDH isoenzymes during pentose fermentation in engineered Saccharomyces cerevisiae.
    Linck A; Vu XK; Essl C; Hiesl C; Boles E; Oreb M
    FEMS Yeast Res; 2014 May; 14(3):389-98. PubMed ID: 24456572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiology and central carbon metabolism of the gut bacterium Prevotella copri.
    Franke T; Deppenmeier U
    Mol Microbiol; 2018 Aug; 109(4):528-540. PubMed ID: 29995973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The metabolic significance of octulose phosphates in the photosynthetic carbon reduction cycle in spinach.
    Williams JF; MacLeod JK
    Photosynth Res; 2006 Nov; 90(2):125-48. PubMed ID: 17160443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The game of the pentose phosphate cycle.
    Meléndez-Hevia E; Isidoro A
    J Theor Biol; 1985 Nov; 117(2):251-63. PubMed ID: 4079448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that aldolase and D-arabinose 5-phosphate are components of pentose pathway reactions in liver in vitro.
    Bleakley PA; Arora KK; Williams JF
    Biochem Int; 1984 Apr; 8(4):491-500. PubMed ID: 6541043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition by fructose 1,6-bisphosphate of transaldolase from Escherichia coli.
    Ogawa T; Murakami K; Yoshino M
    FEMS Microbiol Lett; 2016 Sep; 363(17):. PubMed ID: 27481705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transaldolase of Methanocaldococcus jannaschii.
    Soderberg T; Alver RC
    Archaea; 2004 Oct; 1(4):255-62. PubMed ID: 15810435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of sugar phosphate intermediates of the pentose phosphate pathway by LC-MS/MS: application to two new inherited defects of metabolism.
    Wamelink MM; Struys EA; Huck JH; Roos B; van der Knaap MS; Jakobs C; Verhoeven NM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Aug; 823(1):18-25. PubMed ID: 16055050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome sequence of the thermophilic strain Bacillus coagulans XZL4, an efficient pentose-utilizing producer of chemicals.
    Su F; Xu K; Zhao B; Tai C; Tao F; Tang H; Xu P
    J Bacteriol; 2011 Nov; 193(22):6398-9. PubMed ID: 22038963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.