These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32770890)

  • 21. Hydrogen and Deuterium Molecular Escape from Clathrate Hydrates: "Leaky" Microsecond-Molecular-Dynamics Predictions.
    Krishnan Y; Ghaani MR; English NJ
    J Phys Chem C Nanomater Interfaces; 2021 Apr; 125(15):8430-8439. PubMed ID: 34276853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of small cage guests on hydrogen bonding of tetrahydrofuran in binary structure II clathrate hydrates.
    Alavi S; Ripmeester JA
    J Chem Phys; 2012 Aug; 137(5):054712. PubMed ID: 22894376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Systematic Protocol for Benchmarking Guest-Host Interactions by First-Principles Computations: Capturing CO
    Arismendi-Arrieta DJ; Valdés Á; Prosmiti R
    Chemistry; 2018 Jul; 24(37):9353-9363. PubMed ID: 29600599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlling hydrogen release from remaining-intact Clathrate hydrates by electromagnetic fields: molecular engineering
    Krishnan Y; Rosingana PG; Ghaani MR; English NJ
    RSC Adv; 2022 Jan; 12(7):4370-4376. PubMed ID: 35425438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical study of phase transitions in Kr and Ar clathrate hydrates from structure II to structure I under pressure.
    Subbotin OS; Adamova TP; Belosludov RV; Mizuseki H; Kawazoe Y; Kudoh J; Rodger PM; Belosludov VR
    J Chem Phys; 2009 Sep; 131(11):114507. PubMed ID: 19778129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spontaneous formation of one-dimensional hydrogen gas hydrate in carbon nanotubes.
    Zhao W; Wang L; Bai J; Francisco JS; Zeng XC
    J Am Chem Soc; 2014 Jul; 136(30):10661-8. PubMed ID: 24885238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temperature effects on the C-H symmetric stretching vibrational frequencies of guest hydrocarbon molecules in 5
    Fuseya G; Takeya S; Hachikubo A
    RSC Adv; 2020 Oct; 10(61):37582-37587. PubMed ID: 35521261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure transition and tuning pattern in the double (tetramethylammonium hydroxide + gaseous guests) clathrate hydrates.
    Choi S; Shin K; Lee H
    J Phys Chem B; 2007 Aug; 111(34):10224-30. PubMed ID: 17676892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the thermodynamic stability of clathrate hydrates V: phase behaviors accommodating large guest molecules with new reference states.
    Tanaka H; Matsumoto M
    J Phys Chem B; 2011 Dec; 115(48):14256-62. PubMed ID: 21902174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Competing quantum effects in the free energy profiles and diffusion rates of hydrogen and deuterium molecules through clathrate hydrates.
    Cendagorta JR; Powers A; Hele TJ; Marsalek O; Bačić Z; Tuckerman ME
    Phys Chem Chem Phys; 2016 Nov; 18(47):32169-32177. PubMed ID: 27849073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates.
    Alavi S; Ohmura R
    J Chem Phys; 2016 Oct; 145(15):154708. PubMed ID: 27782458
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural transformations of sVI tert-butylamine hydrates to sII binary hydrates with methane.
    Prasad PS; Sugahara T; Sloan ED; Sum AK; Koh CA
    J Phys Chem A; 2009 Oct; 113(42):11311-5. PubMed ID: 19780602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic free energy surfaces for sodium diffusion in type II silicon clathrates.
    Slingsby JG; Rorrer NA; Krishna L; Toberer ES; Koh CA; Maupin CM
    Phys Chem Chem Phys; 2016 Feb; 18(7):5121-8. PubMed ID: 26658349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental inelastic neutron scattering spectrum of hydrogen hexagonal clathrate-hydrate compared with rigorous quantum simulations.
    Celli M; Powers A; Colognesi D; Xu M; Bačić Z; Ulivi L
    J Chem Phys; 2013 Oct; 139(16):164507. PubMed ID: 24182049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Augmented stability of hydrogen clathrate hydrates by weakly polar molecules.
    Nakayama T; Koga K; Tanaka H
    J Chem Phys; 2009 Dec; 131(21):214506. PubMed ID: 19968350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ab Initio Studies on the Clathrate Hydrates of Some Nitrogen- and Sulfur-Containing Gases.
    Sun N; Li Z; Qiu N; Yu X; Zhang X; Li Y; Yang L; Luo K; Huang Q; Du S
    J Phys Chem A; 2017 Apr; 121(13):2620-2626. PubMed ID: 28304172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct space methods for powder X-ray diffraction for guest-host materials: applications to cage occupancies and guest distributions in clathrate hydrates.
    Takeya S; Udachin KA; Moudrakovski IL; Susilo R; Ripmeester JA
    J Am Chem Soc; 2010 Jan; 132(2):524-31. PubMed ID: 20000734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of guest-host hydrogen bonding on the structures and properties of clathrate hydrates.
    Alavi S; Udachin K; Ripmeester JA
    Chemistry; 2010 Jan; 16(3):1017-25. PubMed ID: 19946907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Abnormal thermal expansion of clathrate hydrates induced by asymmetric guest molecules.
    Cha M; Youn Y; Kwon M; Shin K; Lee S; Lee H
    Chem Asian J; 2012 Jan; 7(1):122-6. PubMed ID: 22034244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Guest-host coupling and anharmonicity in clathrate hydrates.
    Schober H; Itoh H; Klapproth A; Chihaia V; Kuhs WF
    Eur Phys J E Soft Matter; 2003 Sep; 12(1):41-9. PubMed ID: 15007678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.