These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 32770891)
1. An accurate machine-learning calculator for optimization of Li-ion battery cathodes. Houchins G; Viswanathan V J Chem Phys; 2020 Aug; 153(5):054124. PubMed ID: 32770891 [TBL] [Abstract][Full Text] [Related]
2. Reactive Force Field Study of Li/C Systems for Electrical Energy Storage. Raju M; Ganesh P; Kent PR; van Duin AC J Chem Theory Comput; 2015 May; 11(5):2156-66. PubMed ID: 26574418 [TBL] [Abstract][Full Text] [Related]
3. Y-doped Li8ZrO6: A Li-Ion Battery Cathode Material with High Capacity. Huang S; Wilson BE; Wang B; Fang Y; Buffington K; Stein A; Truhlar DG J Am Chem Soc; 2015 Sep; 137(34):10992-1003. PubMed ID: 26264394 [TBL] [Abstract][Full Text] [Related]
4. Adsorption and Diffusion of Lithium and Sodium on Defective Rhenium Disulfide: A First Principles Study. Mukherjee S; Banwait A; Grixti S; Koratkar N; Singh CV ACS Appl Mater Interfaces; 2018 Feb; 10(6):5373-5384. PubMed ID: 29350901 [TBL] [Abstract][Full Text] [Related]
11. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries. Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314 [TBL] [Abstract][Full Text] [Related]
12. Bayesian-Driven First-Principles Calculations for Accelerating Exploration of Fast Ion Conductors for Rechargeable Battery Application. Jalem R; Kanamori K; Takeuchi I; Nakayama M; Yamasaki H; Saito T Sci Rep; 2018 Apr; 8(1):5845. PubMed ID: 29643423 [TBL] [Abstract][Full Text] [Related]
13. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles. Dixit M; Kosa M; Lavi OS; Markovsky B; Aurbach D; Major DT Phys Chem Chem Phys; 2016 Mar; 18(9):6799-812. PubMed ID: 26878345 [TBL] [Abstract][Full Text] [Related]
15. High-Energy Density Li-O Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667 [TBL] [Abstract][Full Text] [Related]
16. First-Principles Study on the Thermal Stability of LiNiO2 Materials Coated by Amorphous Al2O3 with Atomic Layer Thickness. Kang J; Han B ACS Appl Mater Interfaces; 2015 Jun; 7(21):11599-603. PubMed ID: 25980957 [TBL] [Abstract][Full Text] [Related]
17. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
18. Tuning the Electrochemical Properties of Organic Battery Cathode Materials: Insights from Evolutionary Algorithm DFT Calculations. Carvalho RP; Marchiori CFN; Brandell D; Araujo CM ChemSusChem; 2020 May; 13(9):2402-2409. PubMed ID: 32061037 [TBL] [Abstract][Full Text] [Related]
19. Review of the U.S. Department of Energy's "deep dive" effort to understand voltage fade in Li- and Mn-rich cathodes. Croy JR; Balasubramanian M; Gallagher KG; Burrell AK Acc Chem Res; 2015 Nov; 48(11):2813-21. PubMed ID: 26451674 [TBL] [Abstract][Full Text] [Related]
20. Catalytic properties of α-MnO Alam K; Seriani N; Sen P Phys Chem Chem Phys; 2020 May; 22(17):9233-9239. PubMed ID: 32307466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]