These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32770907)

  • 1. Surface-enhanced ultrafast two-dimensional vibrational spectroscopy with engineered plasmonic nano-antennas.
    Chuntonov L; Rubtsov IV
    J Chem Phys; 2020 Aug; 153(5):050902. PubMed ID: 32770907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiative Enhancement of Linear and Third-Order Vibrational Excitations by an Array of Infrared Plasmonic Antennas.
    Gandman A; Mackin RT; Cohn B; Rubtsov IV; Chuntonov L
    ACS Nano; 2018 May; 12(5):4521-4528. PubMed ID: 29727565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Dimensional Infrared Spectroscopy with Local Plasmonic Fields of a Trimer Gap-Antenna Array.
    Cohn B; Engelman B; Goldner A; Chuntonov L
    J Phys Chem Lett; 2018 Aug; 9(16):4596-4601. PubMed ID: 30044640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Communication: Probing the interaction of infrared antenna arrays and molecular films with ultrafast quantum dynamics.
    Cohn B; Prasad AK; Chuntonov L
    J Chem Phys; 2018 Apr; 148(13):131101. PubMed ID: 29626913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast and nonlinear surface-enhanced Raman spectroscopy.
    Gruenke NL; Cardinal MF; McAnally MO; Frontiera RR; Schatz GC; Van Duyne RP
    Chem Soc Rev; 2016 Apr; 45(8):2263-90. PubMed ID: 26848784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures.
    Dregely D; Neubrech F; Duan H; Vogelgesang R; Giessen H
    Nat Commun; 2013; 4():2237. PubMed ID: 23892519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced ultrafast infrared spectroscopy using coupled nanoantenna arrays.
    Kusa F; Morichika I; Takegami A; Ashihara S
    Opt Express; 2017 May; 25(11):12896-12907. PubMed ID: 28786641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational ladder-climbing in surface-enhanced, ultrafast infrared spectroscopy.
    Kraack JP; Hamm P
    Phys Chem Chem Phys; 2016 Jun; 18(24):16088-93. PubMed ID: 27265518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light on the Tip of a Needle: Plasmonic Nanofocusing for Spectroscopy on the Nanoscale.
    Berweger S; Atkin JM; Olmon RL; Raschke MB
    J Phys Chem Lett; 2012 Apr; 3(7):945-52. PubMed ID: 26286425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in Tip-Enhanced Near-Field Raman Microscopy Using Nanoantennas.
    Shi X; Coca-López N; Janik J; Hartschuh A
    Chem Rev; 2017 Apr; 117(7):4945-4960. PubMed ID: 28212025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic mid-infrared third harmonic generation in germanium nanoantennas.
    Fischer MP; Riede A; Gallacher K; Frigerio J; Pellegrini G; Ortolani M; Paul DJ; Isella G; Leitenstorfer A; Biagioni P; Brida D
    Light Sci Appl; 2018; 7():106. PubMed ID: 30564312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical rectification and field enhancement in a plasmonic nanogap.
    Ward DR; Hüser F; Pauly F; Cuevas JC; Natelson D
    Nat Nanotechnol; 2010 Oct; 5(10):732-6. PubMed ID: 20852641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Dimensional Fano Lineshapes in Ultrafast Vibrational Spectroscopy of Thin Molecular Layers on Plasmonic Arrays.
    Gandman A; Mackin R; Cohn B; Rubtsov IV; Chuntonov L
    J Phys Chem Lett; 2017 Jul; 8(14):3341-3346. PubMed ID: 28677974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays.
    Adato R; Yanik AA; Amsden JJ; Kaplan DL; Omenetto FG; Hong MK; Erramilli S; Altug H
    Proc Natl Acad Sci U S A; 2009 Nov; 106(46):19227-32. PubMed ID: 19880744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative comparison of plasmon resonances and field enhancements of near-field optical antennae using FDTD simulations.
    Hermann RJ; Gordon MJ
    Opt Express; 2018 Oct; 26(21):27668-27682. PubMed ID: 30469829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enhanced infrared absorption with Si-doped InAsSb/GaSb nano-antennas.
    Milla MJ; Barho F; González-Posada F; Cerutti L; Charlot B; Bomers M; Neubrech F; Tournie E; Taliercio T
    Opt Express; 2017 Oct; 25(22):26651-26661. PubMed ID: 29092159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas.
    Metzger B; Hentschel M; Schumacher T; Lippitz M; Ye X; Murray CB; Knabe B; Buse K; Giessen H
    Nano Lett; 2014 May; 14(5):2867-72. PubMed ID: 24730433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging.
    Kühner L; Hentschel M; Zschieschang U; Klauk H; Vogt J; Huck C; Giessen H; Neubrech F
    ACS Sens; 2017 May; 2(5):655-662. PubMed ID: 28723169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods.
    Kraack JP
    Top Curr Chem (Cham); 2017 Oct; 375(6):86. PubMed ID: 29071445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.