BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32771244)

  • 1. A numerical simulation method of natural fragment formation and injury to human thorax.
    Ju YY; Zhang L; Ruan DK; Xu C; Hu M; Long RR
    Chin J Traumatol; 2020 Oct; 23(5):258-264. PubMed ID: 32771244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age- and sex-specific thorax finite element model development and simulation.
    Schoell SL; Weaver AA; Vavalle NA; Stitzel JD
    Traffic Inj Prev; 2015; 16 Suppl 1():S57-65. PubMed ID: 26027976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid-structure interaction model.
    Karimi A; Razaghi R; Navidbakhsh M; Sera T; Kudo S
    Injury; 2016 May; 47(5):1042-50. PubMed ID: 26861803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A numerical model for blast injury of human thorax based on digitized visible human.
    Li XF; Kuang JM; Nie SB; Xu J; Zhu J; Liu YH
    Technol Health Care; 2017 Dec; 25(6):1029-1039. PubMed ID: 28759981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Establishment of a 3D finite element model of human thoracic cage and biomechanical analysis].
    Shao Y; Huang P; Li ZD; Liu NG; Wan L; Zou DH; Chen YJ
    Fa Yi Xue Za Zhi; 2013 Apr; 29(2):81-5. PubMed ID: 23930497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on pedestrian thorax injury in vehicle-to-pedestrian collisions using finite element analysis.
    Liu W; Zhao H; Li K; Su S; Fan X; Yin Z
    Chin J Traumatol; 2015; 18(2):74-80. PubMed ID: 26511297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a finite element model for blast injuries to the pig mandible and a preliminary biomechanical analysis.
    Lei T; Xie L; Tu W; Chen Y; Tan Y
    J Trauma Acute Care Surg; 2012 Oct; 73(4):902-7. PubMed ID: 22902731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blast injuries to the human mandible: development of a finite element model and a preliminary finite element analysis.
    Lei T; Xie L; Tu W; Chen Y; Tang Z; Tan Y
    Injury; 2012 Nov; 43(11):1850-5. PubMed ID: 22889532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational and experimental models of the human torso for non-penetrating ballistic impact.
    Roberts JC; Merkle AC; Biermann PJ; Ward EE; Carkhuff BG; Cain RP; O'Connor JV
    J Biomech; 2007; 40(1):125-36. PubMed ID: 16376354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shock waves increase pulmonary vascular leakage, inflammation, oxidative stress, and apoptosis in a mouse model.
    Tong C; Liu Y; Zhang Y; Cong P; Shi X; Liu Y; Shi Hongxu Jin L; Hou M
    Exp Biol Med (Maywood); 2018 Jul; 243(11):934-944. PubMed ID: 29984607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a 10-year-old paediatric thorax finite element model validated against cardiopulmonary resuscitation data.
    Jiang B; Cao L; Mao H; Wagner C; Marek S; Yang KH
    Comput Methods Biomech Biomed Engin; 2014; 17(11):1185-97. PubMed ID: 23181559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the effect of non-penetrating ballistic impact as a means of detecting behind armor blunt trauma.
    Roberts JC; O'Connor JV; Ward EE
    J Trauma; 2005 Jun; 58(6):1241-51. PubMed ID: 15995477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical model of the thorax under blast loading: a three dimensional numerical study.
    Goumtcha AA; Thoral-Pierre K; Roth S
    Int J Numer Method Biomed Eng; 2014 Dec; 30(12):1667-78. PubMed ID: 25363243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational simulation of the mechanical response of brain tissue under blast loading.
    Laksari K; Assari S; Seibold B; Sadeghipour K; Darvish K
    Biomech Model Mechanobiol; 2015 Jun; 14(3):459-72. PubMed ID: 25205088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From military to civil loadings: Preliminary numerical-based thorax injury criteria investigations.
    Goumtcha AA; Bodo M; Taddei L; Roth S
    Int J Numer Method Biomed Eng; 2016 Mar; 32(3):e02738. PubMed ID: 26230416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shock tubes and blast injury modeling.
    Ning YL; Zhou YG
    Chin J Traumatol; 2015; 18(4):187-93. PubMed ID: 26764538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical assessment of brain dynamic responses due to blast pressure waves.
    Chafi MS; Karami G; Ziejewski M
    Ann Biomed Eng; 2010 Feb; 38(2):490-504. PubMed ID: 19806456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Computer simulation of projectile injuries to pig mandibular angle].
    Lei T; Chen YB; Xie LX; Zhang G; Tan YH
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2012 Nov; 47(11):651-6. PubMed ID: 23302424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesh considerations for finite element blast modelling in biomechanics.
    Panzer MB; Myers BS; Bass CR
    Comput Methods Biomech Biomed Engin; 2013; 16(6):612-21. PubMed ID: 22185582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The challenges in developing a finite element injury model of the neck to predict the penetration of explosively propelled projectiles.
    Breeze J; Newbery T; Pope D; Midwinter MJ
    J R Army Med Corps; 2014 Sep; 160(3):220-5. PubMed ID: 24109106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.