These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 32771313)
1. Deep Learning-based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images. Grainger AT; Krishnaraj A; Quinones MH; Tustison NJ; Epstein S; Fuller D; Jha A; Allman KL; Shi W Acad Radiol; 2021 Nov; 28(11):1481-1487. PubMed ID: 32771313 [TBL] [Abstract][Full Text] [Related]
2. Development and Validation of a Deep Learning System for Segmentation of Abdominal Muscle and Fat on Computed Tomography. Park HJ; Shin Y; Park J; Kim H; Lee IS; Seo DW; Huh J; Lee TY; Park T; Lee J; Kim KW Korean J Radiol; 2020 Jan; 21(1):88-100. PubMed ID: 31920032 [TBL] [Abstract][Full Text] [Related]
3. CAFT: a deep learning-based comprehensive abdominal fat analysis tool for large cohort studies. Bhanu PK; Arvind CS; Yeow LY; Chen WX; Lim WS; Tan CH MAGMA; 2022 Apr; 35(2):205-220. PubMed ID: 34338926 [TBL] [Abstract][Full Text] [Related]
4. Automated Deep Learning-Based Segmentation of Abdominal Adipose Tissue on Dixon MRI in Adolescents: A Prospective Population-Based Study. Wu T; Estrada S; van Gils R; Su R; Jaddoe VWV; Oei EHG; Klein S AJR Am J Roentgenol; 2024 Jan; 222(1):e2329570. PubMed ID: 37584508 [No Abstract] [Full Text] [Related]
5. Prognostic value of anthropometric measures extracted from whole-body CT using deep learning in patients with non-small-cell lung cancer. Blanc-Durand P; Campedel L; Mule S; Jegou S; Luciani A; Pigneur F; Itti E Eur Radiol; 2020 Jun; 30(6):3528-3537. PubMed ID: 32055950 [TBL] [Abstract][Full Text] [Related]
6. Fully automated segmentation and quantification of visceral and subcutaneous fat at abdominal CT: application to a longitudinal adult screening cohort. Lee SJ; Liu J; Yao J; Kanarek A; Summers RM; Pickhardt PJ Br J Radiol; 2018 Sep; 91(1089):20170968. PubMed ID: 29557216 [TBL] [Abstract][Full Text] [Related]
7. Deep neural network for automatic volumetric segmentation of whole-body CT images for body composition assessment. Lee YS; Hong N; Witanto JN; Choi YR; Park J; Decazes P; Eude F; Kim CO; Chang Kim H; Goo JM; Rhee Y; Yoon SH Clin Nutr; 2021 Aug; 40(8):5038-5046. PubMed ID: 34365038 [TBL] [Abstract][Full Text] [Related]
9. Automated abdominal adipose tissue segmentation and volume quantification on longitudinal MRI using 3D convolutional neural networks with multi-contrast inputs. Kafali SG; Shih SF; Li X; Kim GHJ; Kelly T; Chowdhury S; Loong S; Moretz J; Barnes SR; Li Z; Wu HH MAGMA; 2024 Jul; 37(3):491-506. PubMed ID: 38300360 [TBL] [Abstract][Full Text] [Related]
10. An effective automatic segmentation of abdominal adipose tissue using a convolution neural network. Micomyiza C; Zou B; Li Y Diabetes Metab Syndr; 2022 Sep; 16(9):102589. PubMed ID: 35995029 [TBL] [Abstract][Full Text] [Related]
12. A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images. Wang Y; Qiu Y; Thai T; Moore K; Liu H; Zheng B Comput Methods Programs Biomed; 2017 Jun; 144():97-104. PubMed ID: 28495009 [TBL] [Abstract][Full Text] [Related]
13. Visceral adiposity and inflammatory bowel disease. Rowan CR; McManus J; Boland K; O'Toole A Int J Colorectal Dis; 2021 Nov; 36(11):2305-2319. PubMed ID: 34104989 [TBL] [Abstract][Full Text] [Related]
14. Subcutaneous, but not visceral, adipose tissue as a marker for prognosis in gastric cancer patients with cachexia. Han J; Tang M; Lu C; Shen L; She J; Wu G Clin Nutr; 2021 Sep; 40(9):5156-5161. PubMed ID: 34461589 [TBL] [Abstract][Full Text] [Related]
15. Optimization of abdominal fat quantification on CT imaging through use of standardized anatomic space: a novel approach. Tong Y; Udupa JK; Torigian DA Med Phys; 2014 Jun; 41(6):063501. PubMed ID: 24877839 [TBL] [Abstract][Full Text] [Related]
17. Deep learning for abdominal adipose tissue segmentation with few labelled samples. Wang Z; Hounye AH; Zhang J; Hou M; Qi M Int J Comput Assist Radiol Surg; 2022 Mar; 17(3):579-587. PubMed ID: 34845590 [TBL] [Abstract][Full Text] [Related]
18. A Combined Region- and Pixel-Based Deep Learning Approach for Quantifying Abdominal Adipose Tissue in Adolescents Using Dixon Magnetic Resonance Imaging. Ogunleye OA; Raviprakash H; Simmons AM; Bovell RTM; Martinez PE; Yanovski JA; Berman KF; Schmidt PJ; Jones EC; Bagheri H; Biassou NM; Hsu LY Tomography; 2023 Jan; 9(1):139-149. PubMed ID: 36648999 [TBL] [Abstract][Full Text] [Related]
19. 3D Neural Networks for Visceral and Subcutaneous Adipose Tissue Segmentation using Volumetric Multi-Contrast MRI. Kafali SG; Shih SF; Li X; Chowdhury S; Loong S; Barnes S; Li Z; Wu HH Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3933-3937. PubMed ID: 34892092 [TBL] [Abstract][Full Text] [Related]
20. Impact of abdominal fat distribution, visceral fat, and subcutaneous fat on coronary plaque scores assessed by 320-row computed tomography coronary angiography. Tanaka T; Kishi S; Ninomiya K; Tomii D; Koseki K; Sato Y; Okuno T; Sato K; Koike H; Yahagi K; Komiyama K; Aoki J; Tanabe K Atherosclerosis; 2019 Aug; 287():155-161. PubMed ID: 31295672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]