These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Preparative Biocatalytic Synthesis of α-Ketoglutaramate. Nikulin M; Drobot V; Švedas V; Krasnikov BF Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884551 [TBL] [Abstract][Full Text] [Related]
3. α-Ketoglutaramate: an overlooked metabolite of glutamine and a biomarker for hepatic encephalopathy and inborn errors of the urea cycle. Cooper AJ; Kuhara T Metab Brain Dis; 2014 Dec; 29(4):991-1006. PubMed ID: 24234505 [TBL] [Abstract][Full Text] [Related]
4. Identification of the putative tumor suppressor Nit2 as omega-amidase, an enzyme metabolically linked to glutamine and asparagine transamination. Krasnikov BF; Chien CH; Nostramo R; Pinto JT; Nieves E; Callaway M; Sun J; Huebner K; Cooper AJ Biochimie; 2009 Sep; 91(9):1072-80. PubMed ID: 19595734 [TBL] [Abstract][Full Text] [Related]
5. ω-Amidase: an underappreciated, but important enzyme in L-glutamine and L-asparagine metabolism; relevance to sulfur and nitrogen metabolism, tumor biology and hyperammonemic diseases. Cooper AJ; Shurubor YI; Dorai T; Pinto JT; Isakova EP; Deryabina YI; Denton TT; Krasnikov BF Amino Acids; 2016 Jan; 48(1):1-20. PubMed ID: 26259930 [TBL] [Abstract][Full Text] [Related]
6. Assay and purification of omega-amidase/Nit2, a ubiquitously expressed putative tumor suppressor, that catalyzes the deamidation of the alpha-keto acid analogues of glutamine and asparagine. Krasnikov BF; Nostramo R; Pinto JT; Cooper AJ Anal Biochem; 2009 Aug; 391(2):144-50. PubMed ID: 19464248 [TBL] [Abstract][Full Text] [Related]
7. Molecular identification of omega-amidase, the enzyme that is functionally coupled with glutamine transaminases, as the putative tumor suppressor Nit2. Jaisson S; Veiga-da-Cunha M; Van Schaftingen E Biochimie; 2009 Sep; 91(9):1066-71. PubMed ID: 19596042 [TBL] [Abstract][Full Text] [Related]
8. Structures of enzyme-intermediate complexes of yeast Nit2: insights into its catalytic mechanism and different substrate specificity compared with mammalian Nit2. Liu H; Gao Y; Zhang M; Qiu X; Cooper AJ; Niu L; Teng M Acta Crystallogr D Biol Crystallogr; 2013 Aug; 69(Pt 8):1470-81. PubMed ID: 23897470 [TBL] [Abstract][Full Text] [Related]
9. High Levels of Glutaminase II Pathway Enzymes in Normal and Cancerous Prostate Suggest a Role in 'Glutamine Addiction'. Dorai T; Dorai B; Pinto JT; Grasso M; Cooper AJL Biomolecules; 2019 Dec; 10(1):. PubMed ID: 31861280 [No Abstract] [Full Text] [Related]
10. Structural insights into the catalytic active site and activity of human Nit2/ω-amidase: kinetic assay and molecular dynamics simulation. Chien CH; Gao QZ; Cooper AJ; Lyu JH; Sheu SY J Biol Chem; 2012 Jul; 287(31):25715-26. PubMed ID: 22674578 [TBL] [Abstract][Full Text] [Related]
11. The metabolic importance of the glutaminase II pathway in normal and cancerous cells. Dorai T; Pinto JT; Denton TT; Krasnikov BF; Cooper AJL Anal Biochem; 2022 May; 644():114083. PubMed ID: 33352190 [TBL] [Abstract][Full Text] [Related]
12. Metabolic Heterogeneity, Plasticity, and Adaptation to "Glutamine Addiction" in Cancer Cells: The Role of Glutaminase and the GTωA [Glutamine Transaminase-ω-Amidase (Glutaminase II)] Pathway. Cooper AJL; Dorai T; Pinto JT; Denton TT Biology (Basel); 2023 Aug; 12(8):. PubMed ID: 37627015 [TBL] [Abstract][Full Text] [Related]
13. A novel efficient producer of human ω-amidase (Nit2) in Escherichia coli. Epova EY; Shevelev AB; Shurubor YI; Cooper AJL; Biryukova YK; Bogdanova ES; Tyno YY; Lebedeva AA; Krasnikov BF Anal Biochem; 2021 Nov; 632():114332. PubMed ID: 34391728 [TBL] [Abstract][Full Text] [Related]
14. Homologous gene clusters of nicotine catabolism, including a new ω-amidase for α-ketoglutaramate, in species of three genera of Gram-positive bacteria. Cobzaru C; Ganas P; Mihasan M; Schleberger P; Brandsch R Res Microbiol; 2011 Apr; 162(3):285-91. PubMed ID: 21288482 [TBL] [Abstract][Full Text] [Related]
15. Enzymatic analysis of α-ketoglutaramate--a biomarker for hyperammonemia. Halámková L; Mailloux S; Halámek J; Cooper AJ; Katz E Talanta; 2012 Oct; 100():7-11. PubMed ID: 23141304 [TBL] [Abstract][Full Text] [Related]
16. High activities of glutamine transaminase K (dichlorovinylcysteine beta-lyase) and omega-amidase in the choroid plexus of rat brain. Cooper AJ; Abraham DG; Gelbard AS; Lai JC; Petito CK J Neurochem; 1993 Nov; 61(5):1731-41. PubMed ID: 8228989 [TBL] [Abstract][Full Text] [Related]
17. Evidence that glutamine transaminase and omega-amidase potentially act in tandem to close the methionine salvage cycle in bacteria and plants. Ellens KW; Richardson LG; Frelin O; Collins J; Ribeiro CL; Hsieh YF; Mullen RT; Hanson AD Phytochemistry; 2015 May; 113():160-9. PubMed ID: 24837359 [TBL] [Abstract][Full Text] [Related]
19. Urinary 2-hydroxy-5-oxoproline, the lactam form of α-ketoglutaramate, is markedly increased in urea cycle disorders. Kuhara T; Inoue Y; Ohse M; Krasnikov BF; Cooper AJ Anal Bioanal Chem; 2011 Jun; 400(7):1843-51. PubMed ID: 21298421 [TBL] [Abstract][Full Text] [Related]
20. Analysis and physiological implications of renal 2-oxoglutaramate metabolism. Nissim I; Wehrli S; States B; Nissim I; Yudkoff M Biochem J; 1991 Jul; 277 ( Pt 1)(Pt 1):33-8. PubMed ID: 1854345 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]