These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32771563)

  • 1. Transport of produced water through reactive porous media.
    Ye Z; Prigiobbe V
    Water Res; 2020 Oct; 185():116258. PubMed ID: 32771563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ionic strength on barium transport in porous media.
    Ye Z; Prigiobbe V
    J Contam Hydrol; 2018 Feb; 209():24-32. PubMed ID: 29402467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-precipitation of radium with barium and strontium sulfate and its impact on the fate of radium during treatment of produced water from unconventional gas extraction.
    Zhang T; Gregory K; Hammack RW; Vidic RD
    Environ Sci Technol; 2014 Apr; 48(8):4596-603. PubMed ID: 24670034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-dependent transport of metal cations in porous media.
    Prigiobbe V; Bryant SL
    Environ Sci Technol; 2014 Apr; 48(7):3752-9. PubMed ID: 24564735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States.
    Vengosh A; Jackson RB; Warner N; Darrah TH; Kondash A
    Environ Sci Technol; 2014; 48(15):8334-48. PubMed ID: 24606408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximum Removal Efficiency of Barium, Strontium, Radium, and Sulfate with Optimum AMD-Marcellus Flowback Mixing Ratios for Beneficial Use in the Northern Appalachian Basin.
    McDevitt B; Cavazza M; Beam R; Cavazza E; Burgos WD; Li L; Warner NR
    Environ Sci Technol; 2020 Apr; 54(8):4829-4839. PubMed ID: 32250106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geochemical conditions conducive for retention of trace elements and radionuclides during shale-fluid interactions.
    Mehta N; Kocar BD
    Environ Sci Process Impacts; 2019 Oct; 21(10):1764-1776. PubMed ID: 31553335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of brine salinity and guar gum on the transport of barium through dolomite rocks: Implications for unconventional oil and gas wastewater disposal.
    Ebrahimi P; Vilcáez J
    J Environ Manage; 2018 May; 214():370-378. PubMed ID: 29544109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive transport modeling of produced water disposal into dolomite saline aquifers: Controls of barium transport.
    Vilcáez J
    J Contam Hydrol; 2020 Aug; 233():103600. PubMed ID: 32679411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania.
    Warner NR; Jackson RB; Darrah TH; Osborn SG; Down A; Zhao K; White A; Vengosh A
    Proc Natl Acad Sci U S A; 2012 Jul; 109(30):11961-6. PubMed ID: 22778445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage.
    Kondash AJ; Warner NR; Lahav O; Vengosh A
    Environ Sci Technol; 2014 Jan; 48(2):1334-42. PubMed ID: 24367969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partitioning of naturally-occurring radionuclides (NORM) in Marcellus Shale produced fluids influenced by chemical matrix.
    Nelson AW; Johns AJ; Eitrheim ES; Knight AW; Basile M; Bettis EA; Schultz MK; Forbes TZ
    Environ Sci Process Impacts; 2016 Apr; 18(4):456-63. PubMed ID: 26952871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfate precipitation in produced water from Marcellus Shale for the control of naturally occurring radioactive material.
    Gusa AV; Tomani A; Zhang Z; Vidic RD
    Water Res; 2020 Jun; 177():115765. PubMed ID: 32278993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption and retardation of strontium in saturated Chinese loess: experimental results and model analysis.
    Huo L; Qian T; Hao J; Zhao D
    J Environ Radioact; 2013 Feb; 116():19-27. PubMed ID: 23085342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radium in hydraulic fracturing wastewater: distribution in suspended solids and implications to its treatment by sulfate co-precipitation.
    Ouyang B; Renock DJ; Ajemigbitse MA; Van Sice K; Warner NR; Landis JD; Feng X
    Environ Sci Process Impacts; 2019 Feb; 21(2):339-351. PubMed ID: 30516236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence and behavior of uranium and thorium series radionuclides in the Permian shale hydraulic fracturing wastes.
    Thakur P; Ward AL; Schaub TM
    Environ Sci Pollut Res Int; 2022 Jun; 29(28):43058-43071. PubMed ID: 35091928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risk assessment of human exposure to Ra-226 in oil produced water from the Bakken Shale.
    Torres L; Yadav OP; Khan E
    Sci Total Environ; 2018 Jun; 626():867-874. PubMed ID: 29396348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical and experimental analysis of solute transport in heterogeneous porous media.
    Wu L; Gao B; Tian Y; Muñoz-Carpena R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(3):338-43. PubMed ID: 24279625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of radium-226 in high salinity wastewater from unconventional gas extraction by inductively coupled plasma-mass spectrometry.
    Zhang T; Bain D; Hammack R; Vidic RD
    Environ Sci Technol; 2015 Mar; 49(5):2969-76. PubMed ID: 25642997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mineral Reactions in Shale Gas Reservoirs: Barite Scale Formation from Reusing Produced Water As Hydraulic Fracturing Fluid.
    Paukert Vankeuren AN; Hakala JA; Jarvis K; Moore JE
    Environ Sci Technol; 2017 Aug; 51(16):9391-9402. PubMed ID: 28723084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.