These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 32771674)

  • 1. Personalized mental stress detection with self-organizing map: From laboratory to the field.
    Tervonen J; Puttonen S; Sillanpää MJ; Hopsu L; Homorodi Z; Keränen J; Pajukanta J; Tolonen A; Lämsä A; Mäntyjärvi J
    Comput Biol Med; 2020 Sep; 124():103935. PubMed ID: 32771674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Approach for Continuous Health Status Monitoring and Automatic Detection of Infection Incidences in People With Type 1 Diabetes Using Machine Learning Algorithms (Part 2): A Personalized Digital Infectious Disease Detection Mechanism.
    Woldaregay AZ; Launonen IK; Albers D; Igual J; Årsand E; Hartvigsen G
    J Med Internet Res; 2020 Aug; 22(8):e18912. PubMed ID: 32784179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Machine Learning and Smartphone and Smartwatch Data to Detect Emotional States and Transitions: Exploratory Study.
    Sultana M; Al-Jefri M; Lee J
    JMIR Mhealth Uhealth; 2020 Sep; 8(9):e17818. PubMed ID: 32990638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring Unsupervised Machine Learning Classification Methods for Physiological Stress Detection.
    Iqbal T; Elahi A; Wijns W; Shahzad A
    Front Med Technol; 2022; 4():782756. PubMed ID: 35359827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Personalization on Smartphone-Based Fall Detectors.
    Medrano C; Plaza I; Igual R; Sánchez Á; Castro M
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26797614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ischemia detection with a self-organizing map supplemented by supervised learning.
    Papadimitriou S; Mavroudi S; Vladutu L; Bezerianos A
    IEEE Trans Neural Netw; 2001; 12(3):503-15. PubMed ID: 18249884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instant Stress: Detection of Perceived Mental Stress Through Smartphone Photoplethysmography and Thermal Imaging.
    Cho Y; Julier SJ; Bianchi-Berthouze N
    JMIR Ment Health; 2019 Apr; 6(4):e10140. PubMed ID: 30964440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An incremental anomaly detection model for virtual machines.
    Zhang H; Chen S; Liu J; Zhou Z; Wu T
    PLoS One; 2017; 12(11):e0187488. PubMed ID: 29117245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress Detection via Keyboard Typing Behaviors by Using Smartphone Sensors and Machine Learning Techniques.
    Sağbaş EA; Korukoglu S; Balli S
    J Med Syst; 2020 Feb; 44(4):68. PubMed ID: 32072331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Empowering Mental Health Monitoring Using a Macro-Micro Personalization Framework for Multimodal-Multitask Learning: Descriptive Study.
    Song M; Yang Z; Triantafyllopoulos A; Zhang Z; Nan Z; Tang M; Takeuchi H; Nakamura T; Kishi A; Ishizawa T; Yoshiuchi K; Schuller B; Yamamoto Y
    JMIR Ment Health; 2024 Oct; 11():e59512. PubMed ID: 39422993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral Modeling for Mental Health using Machine Learning Algorithms.
    Srividya M; Mohanavalli S; Bhalaji N
    J Med Syst; 2018 Apr; 42(5):88. PubMed ID: 29610979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Annotation for Human Activity Recognition in Free Living Using a Smartphone.
    Cruciani F; Cleland I; Nugent C; McCullagh P; Synnes K; Hallberg J
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29987218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study.
    Can YS; Chalabianloo N; Ekiz D; Ersoy C
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Continuously Updated, Computationally Efficient Stress Recognition Framework Using Electroencephalogram (EEG) by Applying Online Multitask Learning Algorithms (OMTL).
    Jebelli H; Mahdi Khalili M; Lee S
    IEEE J Biomed Health Inform; 2019 Sep; 23(5):1928-1939. PubMed ID: 30235150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Organizing Hidden Markov Model Map (SOHMMM).
    Ferles C; Stafylopatis A
    Neural Netw; 2013 Dec; 48():133-47. PubMed ID: 24001407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Machine Learning to Derive Just-In-Time and Personalized Predictors of Stress: Observational Study Bridging the Gap Between Nomothetic and Ideographic Approaches.
    Rozet A; Kronish IM; Schwartz JE; Davidson KW
    J Med Internet Res; 2019 Apr; 21(4):e12910. PubMed ID: 31025942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Centroid neural network for unsupervised competitive learning.
    Park DC
    IEEE Trans Neural Netw; 2000; 11(2):520-8. PubMed ID: 18249781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance Analysis of Boosting Classifiers in Recognizing Activities of Daily Living.
    Rahman S; Irfan M; Raza M; Moyeezullah Ghori K; Yaqoob S; Awais M
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32046302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emotional Stress State Detection Using Genetic Algorithm-Based Feature Selection on EEG Signals.
    Shon D; Im K; Park JH; Lim DS; Jang B; Kim JM
    Int J Environ Res Public Health; 2018 Nov; 15(11):. PubMed ID: 30400575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.