These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32771709)

  • 1. Effect of planting density of the macrophyte consortium of Typha domingensis and Eleocharis acutangula on phytoremediation of barium from a flooded contaminated soil.
    Viana DG; Pires FR; Ferreira AD; Egreja Filho FB; Carvalho CFM; Bonomo R; Martins LF
    Chemosphere; 2021 Jan; 262():127869. PubMed ID: 32771709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ barium phytoremediation in flooded soil using Typha domingensis under different planting densities.
    Viana DG; Egreja Filho FB; Pires FR; Soares MB; Ferreira AD; Bonomo R; Martins LF
    Ecotoxicol Environ Saf; 2021 Mar; 210():111890. PubMed ID: 33440270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cutting frequency effect on barium phytoextraction by macrophytes in flooded environment: A field trial.
    Viana DG; Pires FR; Egreja Filho FB; Bonomo R; Martins LF; Costa KA; Ferreira AD; Madalão JC; Rocha Junior PRD; Nascimento MCP; Cruz LBS; Dias OS
    J Hazard Mater; 2019 Jan; 362():124-131. PubMed ID: 30236932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of barium-affected flooded soils using single and intercropping cultivation of aquatic macrophytes.
    Carvalho CFM; Viana DG; Pires FR; Egreja Filho FB; Bonomo R; Martins LF; Cruz LBS; Nascimento MCP; Cargnelutti Filho A; Rocha Júnior PRD
    Chemosphere; 2019 Jan; 214():10-16. PubMed ID: 30248554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of plants for phytoremediation of barium-polluted flooded soils.
    Ribeiro PRCC; Viana DG; Pires FR; Egreja Filho FB; Bonomo R; Cargnelutti Filho A; Martins LF; Cruz LBS; Nascimento MCP
    Chemosphere; 2018 Sep; 206():522-530. PubMed ID: 29778077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoremediation in flooded environments: Dynamics of barium absorption and translocation by Eleocharis acutangula.
    Ferreira AD; Viana DG; Egreja Filho FB; Pires FR; Bonomo R; Martins LF; Pinto Nascimento MC; Silva Cruz LB
    Chemosphere; 2019 Mar; 219():836-844. PubMed ID: 30572235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrasting plant-induced changes in heavy metals dynamics: Implications for phytoremediation strategies in estuarine wetlands.
    Ferreira AD; Queiroz HM; Boim AGF; Duckworth OW; Otero XL; Bernardino ÂF; Ferreira TO
    Ecotoxicol Environ Saf; 2024 Jul; 279():116416. PubMed ID: 38749195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioavailability of barium to plants and invertebrates in soils contaminated by barite.
    Lamb DT; Matanitobua VP; Palanisami T; Megharaj M; Naidu R
    Environ Sci Technol; 2013 May; 47(9):4670-6. PubMed ID: 23484806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of compost and biodegradable chelate addition on phytoextraction of copper by Oenothera picensis grown in Cu-contaminated acid soils.
    González I; Neaman A; Cortés A; Rubio P
    Chemosphere; 2014 Jan; 95():111-5. PubMed ID: 24034893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron hazard in an impacted estuary: Contrasting controls of plants and implications to phytoremediation.
    Ferreira AD; Queiroz HM; Otero XL; Barcellos D; Bernardino ÂF; Ferreira TO
    J Hazard Mater; 2022 Apr; 428():128216. PubMed ID: 35033915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies.
    Deng L; Li Z; Wang J; Liu H; Li N; Wu L; Hu P; Luo Y; Christie P
    Int J Phytoremediation; 2016; 18(2):134-40. PubMed ID: 26445166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and microbiological hormesis in sedge Eleocharis palustris induced by crude oil in phytoremediation of flooded clay soil.
    Chávez-Álvarez K; Del Carmen Rivera-Cruz M; Aceves-Navarro LA; Trujillo-Narcía A; García-de la Cruz R; Vega-López A
    Ecotoxicology; 2022 Oct; 31(8):1241-1253. PubMed ID: 36112299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfate supply decreases barium availability, uptake, and toxicity in lettuce plants grown in a tropical Ba-contaminated soil.
    de Souza Cardoso AA; Nunes APP; Batista ÉR; Nataren LDCH; Nunes MFPN; Gomes FTL; Leite ADA; Guilherme LRG; Faquin V; Silva MLS
    Environ Sci Pollut Res Int; 2023 Apr; 30(18):53938-53947. PubMed ID: 36869946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioaccessibility of barium from barite contaminated soils based on gastric phase in vitro data and plant uptake.
    Abbasi S; Lamb DT; Palanisami T; Kader M; Matanitobua V; Megharaj M; Naidu R
    Chemosphere; 2016 Feb; 144():1421-7. PubMed ID: 26495826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil.
    Zeng P; Guo Z; Xiao X; Peng C; Feng W; Xin L; Xu Z
    Sci Total Environ; 2019 Feb; 650(Pt 1):594-603. PubMed ID: 30205349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls.
    Wu L; Li Z; Han C; Liu L; Teng Y; Sun X; Pan C; Huang Y; Luo Y; Christie P
    Int J Phytoremediation; 2012 Jul; 14(6):570-84. PubMed ID: 22908627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadmium tolerance of Typha domingensis Pers. (Typhaceae) as related to growth and leaf morphophysiology.
    Oliveira JPV; Pereira MP; Duarte VP; Corrêa FF; Castro EM; Pereira FJ
    Braz J Biol; 2018 Aug; 78(3):509-516. PubMed ID: 29995113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of repeated planting, planting density, and specific transfer pathways on PCB uptake by Cucurbita pepo grown in field conditions.
    Whitfield Aslund ML; Rutter A; Reimer KJ; Zeeb BA
    Sci Total Environ; 2008 Nov; 405(1-3):14-25. PubMed ID: 18786697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulation potential and tolerance response of Typha latifolia L. under citric acid assisted phytoextraction of lead and mercury.
    Amir W; Farid M; Ishaq HK; Farid S; Zubair M; Alharby HF; Bamagoos AA; Rizwan M; Raza N; Hakeem KR; Ali S
    Chemosphere; 2020 Oct; 257():127247. PubMed ID: 32534296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-planting of
    Lachapelle A; Yavari S; Pitre FE; Courchesne F; Brisson J
    Int J Phytoremediation; 2021; 23(6):632-640. PubMed ID: 33222513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.