These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 32771714)
1. The effect of corn syrup and whey on the conversion process of CO to ethanol using Clostridium ljungdahlii. Gunay B; Azbar N; Keskin T Chemosphere; 2020 Dec; 261():127734. PubMed ID: 32771714 [TBL] [Abstract][Full Text] [Related]
2. A Heterodimeric Reduced-Ferredoxin-Dependent Methylenetetrahydrofolate Reductase from Syngas-Fermenting Clostridium ljungdahlii. Yi J; Huang H; Liang J; Wang R; Liu Z; Li F; Wang S Microbiol Spectr; 2021 Oct; 9(2):e0095821. PubMed ID: 34643446 [TBL] [Abstract][Full Text] [Related]
3. Integrating syngas fermentation with the carboxylate platform and yeast fermentation to reduce medium cost and improve biofuel productivity. Richter H; Loftus SE; Angenent LT Environ Technol; 2013; 34(13-16):1983-94. PubMed ID: 24350452 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene. Diner BA; Fan J; Scotcher MC; Wells DH; Whited GM Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054870 [TBL] [Abstract][Full Text] [Related]
5. Traits of selected Clostridium strains for syngas fermentation to ethanol. Martin ME; Richter H; Saha S; Angenent LT Biotechnol Bioeng; 2016 Mar; 113(3):531-9. PubMed ID: 26331212 [TBL] [Abstract][Full Text] [Related]
6. Ethanol Metabolism Dynamics in Clostridium ljungdahlii Grown on Carbon Monoxide. Liu ZY; Jia DC; Zhang KD; Zhu HF; Zhang Q; Jiang WH; Gu Y; Li FL Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414802 [TBL] [Abstract][Full Text] [Related]
7. A study of CO/syngas bioconversion by Clostridium autoethanogenum with a flexible gas-cultivation system. Xu H; Liang C; Yuan Z; Xu J; Hua Q; Guo Y Enzyme Microb Technol; 2017 Jun; 101():24-29. PubMed ID: 28433187 [TBL] [Abstract][Full Text] [Related]
8. Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Maddipati P; Atiyeh HK; Bellmer DD; Huhnke RL Bioresour Technol; 2011 Jun; 102(11):6494-501. PubMed ID: 21474306 [TBL] [Abstract][Full Text] [Related]
9. Optimization of a corn steep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei. Saxena J; Tanner RS World J Microbiol Biotechnol; 2012 Apr; 28(4):1553-61. PubMed ID: 22805937 [TBL] [Abstract][Full Text] [Related]
10. Tracing carbon monoxide uptake by Clostridium ljungdahlii during ethanol fermentation using (13)C-enrichment technique. Yun SI; Gang SJ; Ro HM; Lee MJ; Choi WJ; Hong SG; Kang KK Bioprocess Biosyst Eng; 2013 May; 36(5):591-5. PubMed ID: 22940807 [TBL] [Abstract][Full Text] [Related]
11. Metabolic Engineering of Gas-Fermenting Jia D; He M; Tian Y; Shen S; Zhu X; Wang Y; Zhuang Y; Jiang W; Gu Y ACS Synth Biol; 2021 Oct; 10(10):2628-2638. PubMed ID: 34549587 [TBL] [Abstract][Full Text] [Related]
12. Acetate augmentation boosts the ethanol production rate and specificity by Clostridium ljungdahlii during gas fermentation with pure carbon monoxide. Schulz S; Molitor B; Angenent LT Bioresour Technol; 2023 Feb; 369():128387. PubMed ID: 36435417 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles. Kim YK; Park SE; Lee H; Yun JY Bioresour Technol; 2014 May; 159():446-50. PubMed ID: 24703605 [TBL] [Abstract][Full Text] [Related]
15. Biomass-derived syngas fermentation into biofuels: Opportunities and challenges. Munasinghe PC; Khanal SK Bioresour Technol; 2010 Jul; 101(13):5013-22. PubMed ID: 20096574 [TBL] [Abstract][Full Text] [Related]
16. Impact of formate on the growth and productivity of Clostridium ljungdahlii PETC and Clostridium carboxidivorans P7 grown on syngas. Ramió-Pujol S; Ganigué R; Bañeras L; Colprim J Int Microbiol; 2014 Dec; 17(4):195-204. PubMed ID: 26421736 [TBL] [Abstract][Full Text] [Related]
17. Optimization of CO fermentation by Clostridium carboxidivorans in batch reactors: Effects of the medium composition. Lanzillo F; Pisacane S; Raganati F; Russo ME; Salatino P; Marzocchella A Anaerobe; 2024 Jun; 87():102855. PubMed ID: 38614289 [TBL] [Abstract][Full Text] [Related]
18. Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans. Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C Appl Microbiol Biotechnol; 2016 Apr; 100(7):3361-70. PubMed ID: 26810079 [TBL] [Abstract][Full Text] [Related]
19. A high gas fraction, reduced power, syngas bioprocessing method demonstrated with a Clostridium ljungdahlii OTA1 paper biocomposite. Schulte MJ; Wiltgen J; Ritter J; Mooney CB; Flickinger MC Biotechnol Bioeng; 2016 Sep; 113(9):1913-23. PubMed ID: 26927418 [TBL] [Abstract][Full Text] [Related]
20. Development of low cost medium for ethanol production from syngas by Clostridium ragsdalei. Gao J; Atiyeh HK; Phillips JR; Wilkins MR; Huhnke RL Bioresour Technol; 2013 Nov; 147():508-515. PubMed ID: 24012846 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]