These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32771724)

  • 1. Tungsten carbide@graphene nanoflakes: Preparation, characterization and electrochemical activity for capacitive deionization technology.
    Al-Enizi AM; Abdel Hameed RM; El-Halwany MM; Bakrey M; Shaikh SF; Yousef A
    J Colloid Interface Sci; 2021 Jan; 581(Pt A):112-125. PubMed ID: 32771724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel mesoporous Co
    Delfani E; Khodabakhshi A; Habibzadeh S; Naji L; Ganjali MR
    RSC Adv; 2021 Dec; 12(2):907-920. PubMed ID: 35425095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced capacitive deionization of graphene/mesoporous carbon composites.
    Zhang D; Wen X; Shi L; Yan T; Zhang J
    Nanoscale; 2012 Sep; 4(17):5440-6. PubMed ID: 22836788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing capacitive deionization technology as an effective method for water treatment using commercially available graphene.
    Dursun D; Ozkul S; Yuksel R; Unalan HE
    Water Sci Technol; 2017 Feb; 75(3-4):643-649. PubMed ID: 28192358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-manganese oxide and reduced graphene oxide-incorporated polyacrylonitrile fiber mats as an electrode material for capacitive deionization (CDI) technology.
    Siriwardane IW; Rathuwadu NPW; Dahanayake D; Sandaruwan C; de Silva RM; de Silva KMN
    Nanoscale Adv; 2021 May; 3(9):2585-2597. PubMed ID: 36134151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activated Carbon Blended with Reduced Graphene Oxide Nanoflakes for Capacitive Deionization.
    Folaranmi G; Bechelany M; Sistat P; Cretin M; Zaviska F
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile synthesis of novel graphene sponge for high performance capacitive deionization.
    Xu X; Pan L; Liu Y; Lu T; Sun Z; Chua DH
    Sci Rep; 2015 Feb; 5():8458. PubMed ID: 25675835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen-enriched micro-mesoporous carbon derived from polymers organic frameworks for high-performance capacitive deionization.
    Zhang J; Ning XA; Li D; Wang Y; Lai X; Ou W
    J Environ Sci (China); 2022 Jan; 111():282-291. PubMed ID: 34949358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation between the charge efficiency of activated carbon fiber and its desalination performance.
    Huang ZH; Wang M; Wang L; Kang F
    Langmuir; 2012 Mar; 28(11):5079-84. PubMed ID: 22372914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced capacitive deionization performance of graphene by nitrogen doping.
    Xu X; Pan L; Liu Y; Lu T; Sun Z
    J Colloid Interface Sci; 2015 May; 445():143-150. PubMed ID: 25617614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of porous graphene electrodes via CO
    Zhang Y; Chen L; Mao S; Sun Z; Song Y; Zhao R
    J Colloid Interface Sci; 2019 Feb; 536():252-260. PubMed ID: 30368097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile synthesis of Ni(OH)
    Liu X; Du S; Zuo X; Zhang X; Jiang Y
    RSC Adv; 2021 Dec; 12(2):1177-1183. PubMed ID: 35425118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and capacitive property of graphene nanosheets prepared by using an electrostatic method.
    Park S; Kim S
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7784-7. PubMed ID: 25942866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Desalination Performance of Capacitive Deionization Using Nanoporous Carbon Derived from ZIF-67 Metal Organic Frameworks and CNTs.
    Phuoc NM; Jung E; Tran NAT; Lee YW; Yoo CY; Kang BG; Cho Y
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33105663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and capacitance properties of graphene/NiAl layered double-hydroxide nanocomposite.
    Wang Z; Zhang X; Wang J; Zou L; Liu Z; Hao Z
    J Colloid Interface Sci; 2013 Apr; 396():251-7. PubMed ID: 23411355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced electrochemical and capacitive deionization performance of metal organic framework/holey graphene composite electrodes.
    Feng J; Liu L; Meng Q
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):447-458. PubMed ID: 32896674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Efficient Capacitive Deionization Enabled by NiCo
    Wang W; Liu Z; Zhang Z; Li H
    Glob Chall; 2022 Feb; 6(2):2100095. PubMed ID: 35140981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors.
    Chang J; Sun J; Xu C; Xu H; Gao L
    Nanoscale; 2012 Nov; 4(21):6786-91. PubMed ID: 23001031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.