BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32771748)

  • 1. Selective fluoride removal in capacitive deionization by reduced graphene oxide/hydroxyapatite composite electrode.
    Park G; Hong SP; Lee C; Lee J; Yoon J
    J Colloid Interface Sci; 2021 Jan; 581(Pt A):396-402. PubMed ID: 32771748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Fabrication of NiCoAl-Layered Metal Oxide/Graphene Nanosheets for Efficient Capacitive Deionization Defluorination.
    Li D; Wang S; Wang G; Li C; Che X; Wang S; Zhang Y; Qiu J
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31200-31209. PubMed ID: 31390520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective phosphate removal using layered double hydroxide/reduced graphene oxide (LDH/rGO) composite electrode in capacitive deionization.
    Hong SP; Yoon H; Lee J; Kim C; Kim S; Lee J; Lee C; Yoon J
    J Colloid Interface Sci; 2020 Mar; 564():1-7. PubMed ID: 31896423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-standing flexible film as a binder-free electrode for an efficient hybrid deionization system.
    Sriramulu D; Yang HY
    Nanoscale; 2019 Mar; 11(13):5896-5908. PubMed ID: 30874713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable Desalination by 3:1 Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TiONTs) Composite via Capacitive Deionization at Different Sodium Chloride Concentrations.
    Lazarte JPL; Bautista-Patacsil L; Eusebio RCP; Orbecido AH; Doong RA
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31540150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Investigation of Activated Carbon Electrode and a Novel Activated Carbon/Graphene Oxide Composite Electrode for an Enhanced Capacitive Deionization.
    Folaranmi G; Bechelany M; Sistat P; Cretin M; Zaviska F
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33212895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced capacitive deionization of a low-concentration brackish water with protonated carbon nitride-decorated graphene oxide electrode.
    Yu J; Liu Y; Zhang X; Liu R; Yang Q; Hu S; Song H; Li P; Li A; Zhang S
    Chemosphere; 2022 Apr; 293():133580. PubMed ID: 35026198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel mesoporous Co
    Delfani E; Khodabakhshi A; Habibzadeh S; Naji L; Ganjali MR
    RSC Adv; 2021 Dec; 12(2):907-920. PubMed ID: 35425095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activated Carbon Blended with Reduced Graphene Oxide Nanoflakes for Capacitive Deionization.
    Folaranmi G; Bechelany M; Sistat P; Cretin M; Zaviska F
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-manganese oxide and reduced graphene oxide-incorporated polyacrylonitrile fiber mats as an electrode material for capacitive deionization (CDI) technology.
    Siriwardane IW; Rathuwadu NPW; Dahanayake D; Sandaruwan C; de Silva RM; de Silva KMN
    Nanoscale Adv; 2021 May; 3(9):2585-2597. PubMed ID: 36134151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An energy efficient bi-functional electrode for continuous cation-selective capacitive deionization.
    Vafakhah S; Saeedikhani M; Tanhaei M; Huang S; Guo L; Chiam SY; Yang HY
    Nanoscale; 2020 Nov; 12(45):22917-22927. PubMed ID: 33185635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization.
    Tang W; Kovalsky P; He D; Waite TD
    Water Res; 2015 Nov; 84():342-9. PubMed ID: 26278188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Salt Removal Performance Using Graphene-Modified Sodium Vanadium Fluorophosphate in Flow Electrode Capacitive Deionization.
    Sun Y; Cheng Y; Yu F; Ma J
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53850-53858. PubMed ID: 34738780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Denitrification enhancement by electro-adsorption/reduction in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) with copper electrode.
    Chen L; He F; Li F
    Chemosphere; 2022 Mar; 291(Pt 1):132732. PubMed ID: 34743794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel graphene oxide-based ceramic composite as an efficient electrode for capacitive deionization.
    Khalil KA; Barakat NAM; Motlak M; Al-Mubaddel FS
    Sci Rep; 2020 Jun; 10(1):9676. PubMed ID: 32541891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow electrode capacitive desalination of industrial RO reject.
    Mathew A; Janakiraman M; Karunagaran JR; Ramasamy N; Natesan B
    Environ Sci Pollut Res Int; 2024 Apr; 31(19):28764-28774. PubMed ID: 38558337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective removal of Cl
    Min X; Zhu M; He Y; Wang Y; Deng H; Wang S; Jin L; Wang H; Zhang L; Chai L
    Chemosphere; 2020 Jul; 251():126319. PubMed ID: 32169717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization.
    Kim YJ; Choi JH
    Water Res; 2012 Nov; 46(18):6033-9. PubMed ID: 22980574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose Derived Graphenic Fibers for Capacitive Desalination of Brackish Water.
    Pugazhenthiran N; Sen Gupta S; Prabhath A; Manikandan M; Swathy JR; Raman VK; Pradeep T
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20156-63. PubMed ID: 26305260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.