BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32771761)

  • 1. Selection and optimization of a protocol for extraction of microplastics from Mactra veneriformis.
    Zhang X; Yan B; Wang X
    Sci Total Environ; 2020 Dec; 746():141250. PubMed ID: 32771761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single and combined effects of phenanthrene and polystyrene microplastics on oxidative stress of the clam (Mactra veneriformis).
    Zhang X; Wang X; Yan B
    Sci Total Environ; 2021 Jun; 771():144728. PubMed ID: 33548710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microplastics in seafood: Benchmark protocol for their extraction and characterization.
    Dehaut A; Cassone AL; Frère L; Hermabessiere L; Himber C; Rinnert E; Rivière G; Lambert C; Soudant P; Huvet A; Duflos G; Paul-Pont I
    Environ Pollut; 2016 Aug; 215():223-233. PubMed ID: 27209243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems.
    Su L; Cai H; Kolandhasamy P; Wu C; Rochman CM; Shi H
    Environ Pollut; 2018 Mar; 234():347-355. PubMed ID: 29195176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microplastics in Taihu Lake, China.
    Su L; Xue Y; Li L; Yang D; Kolandhasamy P; Li D; Shi H
    Environ Pollut; 2016 Sep; 216():711-719. PubMed ID: 27381875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oil extraction following digestion to separate microplastics from mussels.
    Song X; Wu X; Song X; Zhang Z
    Chemosphere; 2022 Feb; 289():133187. PubMed ID: 34890625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of microplastics and mercury on manila clam Ruditapes philippinarum: Feeding rate, immunomodulation, histopathology and oxidative stress.
    Sıkdokur E; Belivermiş M; Sezer N; Pekmez M; Bulan ÖK; Kılıç Ö
    Environ Pollut; 2020 Jul; 262():114247. PubMed ID: 32120258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microplastics in commercial bivalves from China.
    Li J; Yang D; Li L; Jabeen K; Shi H
    Environ Pollut; 2015 Dec; 207():190-5. PubMed ID: 26386204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interlaboratory comparison of microplastic extraction methods from marine biota tissues: A harmonization exercise of the Plastic Busters MPAs project.
    Tsangaris C; Panti C; Compa M; Pedà C; Digka N; Baini M; D'Alessandro M; Alomar C; Patsiou D; Giani D; Romeo T; Deudero S; Fossi MC
    Mar Pollut Bull; 2021 Mar; 164():111992. PubMed ID: 33493856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of a new multi-reagent procedure for quantitative mussel digestion in microplastic analysis.
    Fraissinet S; Pennetta A; Rossi S; De Benedetto GE; Malitesta C
    Mar Pollut Bull; 2021 Dec; 173(Pt A):112931. PubMed ID: 34534932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring of microplastics in the clam Donax cuneatus and its habitat in Tuticorin coast of Gulf of Mannar (GoM), India.
    Narmatha Sathish M; Immaculate Jeyasanta K; Patterson J
    Environ Pollut; 2020 Nov; 266(Pt 1):115219. PubMed ID: 32683232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of microplastic ingestion by the decapod crustacean Nephrops norvegicus from Irish waters.
    Hara J; Frias J; Nash R
    Mar Pollut Bull; 2020 Mar; 152():110905. PubMed ID: 31957681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microplastic contamination in edible clams from popular recreational clam-digging sites in Hong Kong and implications for human health.
    Lam TWL; Tsui YCJ; Cheng YL; Ma ATH; Fok L
    Sci Total Environ; 2023 Jun; 875():162576. PubMed ID: 36871718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics and potential human health risks of microplastics identified in typical clams from South Yellow Sea Mudflat.
    Guo Q; Ding C; Li Z; Chen X; Wu J; Li X; Yu J; Wang C; Liang F; Chen T; Yang B; Chen T
    Sci Total Environ; 2023 Dec; 905():167044. PubMed ID: 37709086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient and gentle enzymatic digestion protocol for the extraction of microplastics from bivalve tissue.
    von Friesen LW; Granberg ME; Hassellöv M; Gabrielsen GW; Magnusson K
    Mar Pollut Bull; 2019 May; 142():129-134. PubMed ID: 31232285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of an Analytical Protocol for the Extraction of Microplastics from Seafood Samples with Different Levels of Fat.
    Silva DM; Almeida CMR; Guardiola F; Rodrigues SM; Ramos S
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues.
    Catarino AI; Thompson R; Sanderson W; Henry TB
    Environ Toxicol Chem; 2017 Apr; 36(4):947-951. PubMed ID: 27583696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of existing methods to extract microplastics from bivalve tissue: Adapted KOH digestion protocol improves filtration at single-digit pore size.
    Thiele CJ; Hudson MD; Russell AE
    Mar Pollut Bull; 2019 May; 142():384-393. PubMed ID: 31232316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microplastic pollution research methodologies, abundance, characteristics and risk assessments for aquatic biota in China.
    Fu Z; Chen G; Wang W; Wang J
    Environ Pollut; 2020 Nov; 266(Pt 3):115098. PubMed ID: 32629309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the UV filter, oxybenzone, adsorbed to microplastics in the clam Scrobicularia plana.
    O'Donovan S; Mestre NC; Abel S; Fonseca TG; Carteny CC; Willems T; Prinsen E; Cormier B; Keiter SS; Bebianno MJ
    Sci Total Environ; 2020 Sep; 733():139102. PubMed ID: 32446057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.