BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 32771841)

  • 1. Improved object recognition using neural networks trained to mimic the brain's statistical properties.
    Federer C; Xu H; Fyshe A; Zylberberg J
    Neural Netw; 2020 Nov; 131():103-114. PubMed ID: 32771841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local features and global shape information in object classification by deep convolutional neural networks.
    Baker N; Lu H; Erlikhman G; Kellman PJ
    Vision Res; 2020 Jul; 172():46-61. PubMed ID: 32413803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crowding in humans is unlike that in convolutional neural networks.
    Lonnqvist B; Clarke ADF; Chakravarthi R
    Neural Netw; 2020 Jun; 126():262-274. PubMed ID: 32272430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Visual Cortex and Deep Convolutional Neural Network Care Deeply about Object Background.
    Loke J; Seijdel N; Snoek L; Sörensen LKA; van de Klundert R; van der Meer M; Quispel E; Cappaert N; Scholte HS
    J Cogn Neurosci; 2024 Mar; 36(3):551-566. PubMed ID: 38165735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep convolutional networks do not classify based on global object shape.
    Baker N; Lu H; Erlikhman G; Kellman PJ
    PLoS Comput Biol; 2018 Dec; 14(12):e1006613. PubMed ID: 30532273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Face Recognition Depends on Specialized Mechanisms Tuned to View-Invariant Facial Features: Insights from Deep Neural Networks Optimized for Face or Object Recognition.
    Abudarham N; Grosbard I; Yovel G
    Cogn Sci; 2021 Sep; 45(9):e13031. PubMed ID: 34490907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.
    Rajalingham R; Issa EB; Bashivan P; Kar K; Schmidt K; DiCarlo JJ
    J Neurosci; 2018 Aug; 38(33):7255-7269. PubMed ID: 30006365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of Visual Center-Periphery Spatial Organization in Deep Convolutional Neural Networks.
    Mohsenzadeh Y; Mullin C; Lahner B; Oliva A
    Sci Rep; 2020 Mar; 10(1):4638. PubMed ID: 32170209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correspondence between Monkey Visual Cortices and Layers of a Saliency Map Model Based on a Deep Convolutional Neural Network for Representations of Natural Images.
    Wagatsuma N; Hidaka A; Tamura H
    eNeuro; 2021; 8(1):. PubMed ID: 33234544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Ventral Visual Pathway Represents Animal Appearance over Animacy, Unlike Human Behavior and Deep Neural Networks.
    Bracci S; Ritchie JB; Kalfas I; Op de Beeck HP
    J Neurosci; 2019 Aug; 39(33):6513-6525. PubMed ID: 31196934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A brain-inspired network architecture for cost-efficient object recognition in shallow hierarchical neural networks.
    Park Y; Baek S; Paik SB
    Neural Netw; 2021 Feb; 134():76-85. PubMed ID: 33291018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Qualitative similarities and differences in visual object representations between brains and deep networks.
    Jacob G; Pramod RT; Katti H; Arun SP
    Nat Commun; 2021 Mar; 12(1):1872. PubMed ID: 33767141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-world size of objects serves as an axis of object space.
    Huang T; Song Y; Liu J
    Commun Biol; 2022 Jul; 5(1):749. PubMed ID: 35896715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depth in convolutional neural networks solves scene segmentation.
    Seijdel N; Tsakmakidis N; de Haan EHF; Bohte SM; Scholte HS
    PLoS Comput Biol; 2020 Jul; 16(7):e1008022. PubMed ID: 32706770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical Sparse Coding of Objects in Deep Convolutional Neural Networks.
    Liu X; Zhen Z; Liu J
    Front Comput Neurosci; 2020; 14():578158. PubMed ID: 33362499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ecologically motivated image dataset for deep learning yields better models of human vision.
    Mehrer J; Spoerer CJ; Jones EC; Kriegeskorte N; Kietzmann TC
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33593900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracranial Electroencephalography and Deep Neural Networks Reveal Shared Substrates for Representations of Face Identity and Expressions.
    Schwartz E; Alreja A; Richardson RM; Ghuman A; Anzellotti S
    J Neurosci; 2023 Jun; 43(23):4291-4303. PubMed ID: 37142430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robustness to Transformations Across Categories: Is Robustness Driven by Invariant Neural Representations?
    Jang H; Zaidi SSA; Boix X; Prasad N; Gilad-Gutnick S; Ben-Ami S; Sinha P
    Neural Comput; 2023 Nov; 35(12):1910-1937. PubMed ID: 37844328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Face Space Representations in Deep Convolutional Neural Networks.
    O'Toole AJ; Castillo CD; Parde CJ; Hill MQ; Chellappa R
    Trends Cogn Sci; 2018 Sep; 22(9):794-809. PubMed ID: 30097304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep convolutional models improve predictions of macaque V1 responses to natural images.
    Cadena SA; Denfield GH; Walker EY; Gatys LA; Tolias AS; Bethge M; Ecker AS
    PLoS Comput Biol; 2019 Apr; 15(4):e1006897. PubMed ID: 31013278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.