These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 32772801)
1. Epigenomic and Transcriptomic Dynamics During Human Heart Organogenesis. VanOudenhove J; Yankee TN; Wilderman A; Cotney J Circ Res; 2020 Oct; 127(9):e184-e209. PubMed ID: 32772801 [TBL] [Abstract][Full Text] [Related]
2. Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer. van den Boogaard M; Wong LY; Tessadori F; Bakker ML; Dreizehnter LK; Wakker V; Bezzina CR; 't Hoen PA; Bakkers J; Barnett P; Christoffels VM J Clin Invest; 2012 Jul; 122(7):2519-30. PubMed ID: 22706305 [TBL] [Abstract][Full Text] [Related]
3. Epigenome overlap measure (EPOM) for comparing tissue/cell types based on chromatin states. Li WV; Razaee ZS; Li JJ BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):10. PubMed ID: 26817822 [TBL] [Abstract][Full Text] [Related]
4. Epigenetic Analyses of Human Left Atrial Tissue Identifies Gene Networks Underlying Atrial Fibrillation. Hall AW; Chaffin M; Roselli C; Lin H; Lubitz SA; Bianchi V; Geeven G; Bedi K; Margulies KB; de Laat W; Tucker NR; Ellinor PT Circ Genom Precis Med; 2020 Dec; 13(6):e003085. PubMed ID: 33155827 [TBL] [Abstract][Full Text] [Related]
5. Chromatin state signatures associated with tissue-specific gene expression and enhancer activity in the embryonic limb. Cotney J; Leng J; Oh S; DeMare LE; Reilly SK; Gerstein MB; Noonan JP Genome Res; 2012 Jun; 22(6):1069-80. PubMed ID: 22421546 [TBL] [Abstract][Full Text] [Related]
6. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Parker SC; Stitzel ML; Taylor DL; Orozco JM; Erdos MR; Akiyama JA; van Bueren KL; Chines PS; Narisu N; ; Black BL; Visel A; Pennacchio LA; Collins FS; ; Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17921-6. PubMed ID: 24127591 [TBL] [Abstract][Full Text] [Related]
7. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Lickert H; Takeuchi JK; Von Both I; Walls JR; McAuliffe F; Adamson SL; Henkelman RM; Wrana JL; Rossant J; Bruneau BG Nature; 2004 Nov; 432(7013):107-12. PubMed ID: 15525990 [TBL] [Abstract][Full Text] [Related]
8. Extrapolating histone marks across developmental stages, tissues, and species: an enhancer prediction case study. Capra JA BMC Genomics; 2015 Feb; 16(1):104. PubMed ID: 25765133 [TBL] [Abstract][Full Text] [Related]
9. Epigenomic landscape of enhancer elements during Hydra head organizer formation. Reddy PC; Gungi A; Ubhe S; Galande S Epigenetics Chromatin; 2020 Oct; 13(1):43. PubMed ID: 33046126 [TBL] [Abstract][Full Text] [Related]
10. Regulatory variation in a TBX5 enhancer leads to isolated congenital heart disease. Smemo S; Campos LC; Moskowitz IP; Krieger JE; Pereira AC; Nobrega MA Hum Mol Genet; 2012 Jul; 21(14):3255-63. PubMed ID: 22543974 [TBL] [Abstract][Full Text] [Related]
11. Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. He A; Kong SW; Ma Q; Pu WT Proc Natl Acad Sci U S A; 2011 Apr; 108(14):5632-7. PubMed ID: 21415370 [TBL] [Abstract][Full Text] [Related]
12. Super-enhancers are transcriptionally more active and cell type-specific than stretch enhancers. Khan A; Mathelier A; Zhang X Epigenetics; 2018; 13(9):910-922. PubMed ID: 30169995 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide compendium and functional assessment of in vivo heart enhancers. Dickel DE; Barozzi I; Zhu Y; Fukuda-Yuzawa Y; Osterwalder M; Mannion BJ; May D; Spurrell CH; Plajzer-Frick I; Pickle CS; Lee E; Garvin TH; Kato M; Akiyama JA; Afzal V; Lee AY; Gorkin DU; Ren B; Rubin EM; Visel A; Pennacchio LA Nat Commun; 2016 Oct; 7():12923. PubMed ID: 27703156 [TBL] [Abstract][Full Text] [Related]
15. Identification of genomic enhancers through spatial integration of single-cell transcriptomics and epigenomics. Bravo González-Blas C; Quan XJ; Duran-Romaña R; Taskiran II; Koldere D; Davie K; Christiaens V; Makhzami S; Hulselmans G; de Waegeneer M; Mauduit D; Poovathingal S; Aibar S; Aerts S Mol Syst Biol; 2020 May; 16(5):e9438. PubMed ID: 32431014 [TBL] [Abstract][Full Text] [Related]
16. Spatially resolved epigenomic profiling of single cells in complex tissues. Lu T; Ang CE; Zhuang X Cell; 2022 Nov; 185(23):4448-4464.e17. PubMed ID: 36272405 [TBL] [Abstract][Full Text] [Related]
18. Integrative epigenomic and high-throughput functional enhancer profiling reveals determinants of enhancer heterogeneity in gastric cancer. Sheng T; Ho SWT; Ooi WF; Xu C; Xing M; Padmanabhan N; Huang KK; Ma L; Ray M; Guo YA; Sim NL; Anene-Nzelu CG; Chang MM; Razavi-Mohseni M; Beer MA; Foo RSY; Sundar R; Chan YH; Tan ALK; Ong X; Skanderup AJ; White KP; Jha S; Tan P Genome Med; 2021 Oct; 13(1):158. PubMed ID: 34635154 [TBL] [Abstract][Full Text] [Related]
19. Regulatory genomic circuitry of human disease loci by integrative epigenomics. Boix CA; James BT; Park YP; Meuleman W; Kellis M Nature; 2021 Feb; 590(7845):300-307. PubMed ID: 33536621 [TBL] [Abstract][Full Text] [Related]