BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 32772860)

  • 1. Numerical simulation of deformed red blood cell by utilizing neural network approach and finite element analysis.
    Wang Y; Sang J; Ao R; Ma Y; Fu B
    Comput Methods Biomech Biomed Engin; 2020 Nov; 23(15):1190-1200. PubMed ID: 32772860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes.
    Klöppel T; Wall WA
    Biomech Model Mechanobiol; 2011 Jul; 10(4):445-59. PubMed ID: 20725846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching.
    Geekiyanage NM; Sauret E; Saha SC; Flower RL; Gu YT
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1827-1843. PubMed ID: 32100179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulation of transient dynamic behavior of healthy and hardened red blood cells in microcapillary flow.
    Hashemi Z; Rahnama M
    Int J Numer Method Biomed Eng; 2016 Nov; 32(11):. PubMed ID: 26729644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel machine learning based computational framework for homogenization of heterogeneous soft materials: application to liver tissue.
    Hashemi MS; Baniassadi M; Baghani M; George D; Remond Y; Sheidaei A
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1131-1142. PubMed ID: 31823106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks.
    Arbabi V; Pouran B; Campoli G; Weinans H; Zadpoor AA
    J Biomech; 2016 Mar; 49(5):631-637. PubMed ID: 26944689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical approximation of tangent moduli for finite element implementations of nonlinear hyperelastic material models.
    Sun W; Chaikof EL; Levenston ME
    J Biomech Eng; 2008 Dec; 130(6):061003. PubMed ID: 19045532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.
    Oddes Z; Solav D
    J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear compliance of elastic layers to indentation.
    Fessel A; Döbereiner HG
    Biomech Model Mechanobiol; 2018 Apr; 17(2):419-438. PubMed ID: 29094275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomechanical characterization of red blood cells using optical tweezers.
    Li C; Liu KK
    J Mater Sci Mater Med; 2008 Apr; 19(4):1529-35. PubMed ID: 18214643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional strain-hardening membrane model for large deformation behavior of multiple red blood cells in high shear conditions.
    Ye SS; Ng YC; Tan J; Leo HL; Kim S
    Theor Biol Med Model; 2014 May; 11():19. PubMed ID: 24885482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of numerical methods for red blood cell flow simulation.
    Ju M; Ye SS; Namgung B; Cho S; Low HT; Leo HL; Kim S
    Comput Methods Biomech Biomed Engin; 2015; 18(2):130-40. PubMed ID: 23582050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A poroviscohyperelastic model for numerical analysis of mechanical behavior of single chondrocyte.
    Nguyen TD; Oloyede A; Gu Y
    Comput Methods Biomech Biomed Engin; 2016; 19(2):126-36. PubMed ID: 25588670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nonlinear mechanical response of the red blood cell.
    Yoon YZ; Kotar J; Yoon G; Cicuta P
    Phys Biol; 2008 Aug; 5(3):036007. PubMed ID: 18698116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method.
    Huang H; Tang W; Yan B; Wu B; Cao D
    Comput Methods Biomech Biomed Engin; 2016; 19(2):188-98. PubMed ID: 25648914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of extracting tissue material properties via cohesive elements: a finite element approach to probe insertion procedures in non-invasive spine surgeries.
    Bojairami IE; Hamedzadeh A; Driscoll M
    Med Biol Eng Comput; 2021 Oct; 59(10):2051-2061. PubMed ID: 34431026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red blood cell simulation using a coupled shell-fluid analysis purely based on the SPH method.
    Soleimani M; Sahraee S; Wriggers P
    Biomech Model Mechanobiol; 2019 Apr; 18(2):347-359. PubMed ID: 30377857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C; Vogl TJ; Silber G
    J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelasticity of the human red blood cell.
    Puig-de-Morales-Marinkovic M; Turner KT; Butler JP; Fredberg JJ; Suresh S
    Am J Physiol Cell Physiol; 2007 Aug; 293(2):C597-605. PubMed ID: 17428838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.